Modeling of a Cubic Antiferromagnetic Cuprate Super-Cage

Abstract

Convex polyhedral cuprate clusters are being formed through lateral frustration when the a and c lattice parameters of the tetragonal ACuO2 infinite layer structure will become identical by substitution of a large cation (A = Ba2+). However, the corner-shared CuO2 plaquettes of the infinite network suffer a topotactic rearrangement forming edge-connected units, for instance Cu18O24 cages (polyhedron notation [4641238]) with <90° ferromagnetic super-exchange interaction as found in cubic BaCuO2. Cage formation via a hypothetical tetragonal BaCuO2 compound (space group P4/ nmm) will be discussed. The possibility to construct a cuprate super-cage with m3m symmetry (polyhedron notation [4641242438]) is being reported. This super-cage still consists of edge-connected CuO2 plaquettes when fully decorated with copper ions, but with different curvatures, arranged in circles of 9.39 ? of diameter with 139.2° Cu-O-Cu antiferromagnetic super-exchange interaction. On the one hand, the realization of such a quite stable cuprate super-cage as a candidate for high-Tc superconductivity depends on whether a template of suitable size such as the cation or C(CH3)4 enables its formation, and on the other hand the cage can further be stabilized by highly charged cations located along the [111] direction. Synthesis options will be proposed based on suggested cage formation pathways. An X-ray powder pattern was calculated for a less dense cluster structure of Im3m space group with a lattice parameter of a = 14.938 ? and two formula units of Cu46O51 to facilitate future identification. Characteristic X-ray scattering features as identification tool were obtained when the electron distribution of the hollow polyhedron was approximated with electron density in a spherical shell.

Share and Cite:

Otto, H. (2015) Modeling of a Cubic Antiferromagnetic Cuprate Super-Cage. World Journal of Condensed Matter Physics, 5, 160-178. doi: 10.4236/wjcmp.2015.53018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bednorz, J.G. and Müller, K.A. (1986) Possible High Tc Superconductivity in the Ba-La-Cu-O System. Zeitschrift für Physik, B64,189-193. http://dx.doi.org/10.1007/BF01303701
[2] Müller-Buschbaum, H. (1989) Zur Kristallchemie der oxidischen Hochtemperatur-Supraleiter und deren kristallchemischen Verwandten. Zeitschrift für anorganische und allgemeine Chemie, 101, 1503-1524.
http://dx.doi.org/10.1002/ange.19891011105
[3] Yvon, K. and François, M. (1989) Crystal Structures of High-Tc Oxides. The Years 1987 and 1988. Zeitschrift für Physik, B76, 413-444. http://dx.doi.org/10.1007/BF01307892
[4] Baltrusch, R. (1997) Zur Kristallchemie von Systemen oxidischer Hochtemperatursupraleiter. Dissertation, TU Clausthal, Clausthal-Zellerfeld.
[5] Otto, H.H., Brandt, H.-J. and Meibohm, M. (1996) über die Existenz des Kupferpolysilicats Cu{uB111}Cu{uB111} [1SiO3]. Beihefte zu European Journal of Mineralogy, 8, 206.
[6] Otto, H.H. and Meibohm, M. (1999) Crystal Structure of Copper Polysilicate, Cu [SiO3]. Zeitschrift für Kristallographie, 214, 558-565. http://dx.doi.org/10.1524/zkri.1999.214.9.558
[7] Sigrist, T., Zahurak, S.M., Murphy, D.W. and Roth, R.S. (1988) The Parent Structure of the Layered High-Temperature Superconductors. Nature 334, 231-232. http://dx.doi.org/10.1038/334231a0
[8] Siemons, W. (2008) Nanoscale Properties of Complex Oxide Films. Ph.D. Thesis, University of Twente, Enschede.
[9] Jahn, H.A. and Teller, E. (1937) Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy. Proceedings of the Royal Society, A161, 220-235.
http://dx.doi.org/10.1098/rspa.1937.0142
[10] Woodley, S.M. and Catlow, R. (2008) Crystal Structure Predictions from First Principles. Nature Materials, 7, 907-946. http://dx.doi.org/10.1038/nmat2321
[11] Forster, M.D., Simperler, A., Bell, R.G., Friedrich, O.D., Paz, F.A. and Klinowski, J. (2004) Chemically Feasible Hypothetical Crystalline Networks. Nature Materials, 3, 234-238.
http://dx.doi.org/10.1038/nmat1090
[12] Schein, S. and Gayed, J.M. (2014) Fourth Class of Convex Equilateral Polyhedron with Polyhedral Symmetry Related to Fullerenes and Viruses. Proceedings of the National Academy of Sciences of the United States of America, 111, 2920-2925. http://dx.doi.org/10.1073/pnas.1310939111
[13] Zhai, H.-J., Zhao, Y.-F., Li, W.-L., Chen, Q., Bai, H., Hu, H.-S., Piazza, Z.A., Tian, W.-J., Lu, H.-G., Wu, Y.-B., Mu, Y.-W., Wie, G.-F., Liu, Z.-P., Li, J., Li, S.-D. and Wang, L.-S. (2014) Observation of an All-Boron Fullerene. Nature Chemistry, 6, 727-731. http://dx.doi.org/10.1038/nchem.1999
[14] Brown, I.D. and Shannon, R.D. (1973) Empirical Bond-Strength—Bond-Length Curves for Oxides. Acta Crystallographica Section A, 29, 266-282. http://dx.doi.org/10.1107/S0567739473000689
[15] Brown, I.D. (1981) The Bond-Valence Method: An Empirical Approach to Chemical Structure and Bonding. Structure and Bonding in Crystals. Volume II, Academic Press, New York.
[16] Zhu, S., Norton, D.P., Chamberlain, J.E., Shahedipour, F. and White, H.W. (1996) Evidence of Apical Oxygen in Artificially Superconducting SrCuO2-BaCuO2 Thin Films: A Raman Characterization. Physical Review B, 54, 97-100. http://dx.doi.org/10.1103/PhysRevB.54.97
[17] Schönberger, R., Otto, H.H., Brunner, B. and Renk, K.F. (1991) Evidence for Filamentary Superconductivity up to 220 K in Oriented Multiphase Y-Ba-Cu-O Thin Films. Physica C: Superconductivity, 173, 159-162. http://dx.doi.org/10.1016/0921-4534(91)90363-4
[18] Azzoni, C.B., Paravicini, G.B.A., Samoggia, G., Ferloni, P. and Parmigiani, F. (1990) Electrical Instability in CuO1-x: Possible Correlations with the CuO-Based High Temperature Superconductors. Zeitschriftfür Naturforschung, A45, 790-794.
[19] Osipov, V.V., Kochev, I.V. and Naumov, S.V. (20010) Giant Electric Conductivity at the CuO-Cu Interface: HTSL-Like Temperature Variations. Journal of Experimental and Theoretical Physics, 93, 1082-1090.
[20] Mitkin, A.V. (2012) Striped Organization of Hole Excitations and Oxygen Interstitials in Cuprates as a Route to Room-Temperature Superconductivity. Journal of Superconductivity and Novel Magneti, 25, 1277-1281.
[21] Liu, L. and Bassett, W.A. (1972) Effect of Pressure on the Crystal Structure and Lattice Parameters of BaO. Journal of Geophysical Research, 77, 4934-4937. http://dx.doi.org/10.1029/JB077i026p04934
[22] Kimura, T, Goto, T., Shintani, H., Ishizaka, K., Arima, T. and Tokura, Y. (2003) Magnetic Control of Ferroelectric Polarization. Nature, 426, 55-58. http://dx.doi.org/10.1038/nature02018
[23] Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T. and Ramirez, A.P. (2008) Cupric Oxide as an Induced-Multiferroic with High-Tc. Nature Materials, 7, 291-294. http://dx.doi.org/10.1038/nmat2125
[24] Ramirez, A.P., Broholm, C.I., Cava, R.J. and Kowach, G.R. (2000) Geometrical Frustration, Spin Ice and Negative Thermal Expansion—The Physics of Under-Constraint. Physica B, 280, 290-295.
http://dx.doi.org/10.1016/S0921-4526(99)01695-6
[25] Euler, L. (1752) Elementa doctrine solidorum. Novi commentarii academiae scientiarum imperialis petropolitanae, 4, 109-160.
[26] Otto, H.H. (1980) Manual for Turbo-Basic Crystal Structure Programs: Strufit, Guinkorr, Binwin, Bondval. Regensburg University, Regensburg.
[27] Rocquefelte, X., Schwarz, K. and Blaha, P. (2012) Theoretical Investigation of the Magnetic Exchange Interaction in Copper(II) Oxides under Chemical and Physical Pressures. Scientific Reports, 2, Article No. 759. http://dx.doi.org/10.1038/srep00759
[28] Siemons, W., Koster, G., Blank, D.H.A., Hammond, R.H., Geballe, T.H. and Beasley, M.R. (2009) Tetragonal CuO: End Member of the 3d Transition Metal Monoxides. Physical Review B, 79, Article ID: 195122. http://dx.doi.org/10.1103/PhysRevB.79.195122
[29] Samal, D., Tan, H., Takamura, Y., Siemons, W., Verbeeck, J., Van Tendeloo, G., Arenholz, E., Jenkins, C.A., Rijnders, G. and Koster, G. (2014) Direct Structural and Spectroscopic Investigation of Ultrathin Films of Tetragonal CuO: Six-Fold Coordinated Copper. Europhysics Letters, 105, Article ID: 17003.
http://dx.doi.org/10.1209/0295-5075/105/17003
[30] Carvajal, J.R. (2004) Introduction to the Program FULLPROF. Laboratoire Leon Brillon (CEA-CNRS), Saclay France.
[31] Alloull, H. and Lyle, S. (2010) Introduction to the Physics of Electrons in Solids. E-Book, Springer Verlag, Berlin.
[32] Moser, S. Moreschini, L. Yang, H.-Y., Innocenti, D., Fuchs, F., Hansen, N.H., Chang, Y.J., Kim, K.S., Walter, A.L., Bostwick, A., Rotenberg, E., Mila, F. and Grioni, M. (2014) Angle-Resolved Photoemission Spectroscopy of Tetragonal CuO: Evidence for Intralayer Coupling between Cupratelike Sublattices. Physical Review Letters, 113, Article ID: 187001. http://dx.doi.org/10.1103/PhysRevLett.113.187001
[33] Takano, M., Takeda, Y., Okada, H., Miyamoto, M. and Kusaka, T. (1989) A CuO2 (A: Alkaline Earth) Crystallizing in a Layered Structure. Physica C, 159, 375-378.
http://dx.doi.org/10.1016/S0921-4534(89)80007-3
[34] Sakurai, T., Sugii, N., Takizawa, H., Ichikawa, M., Yaegashi, Y., Adachi, S., Shimada, M. and Yamauchi, H. (1992) Ba0.5Sr0.5CuO2: A New Perovskite Related Structure Which Forms at High Pressure. Physica C, 193, 471-475. http://dx.doi.org/10.1016/0921-4534(92)90973-G
[35] Karpinsky, J., Schwer, H., Mangelshots, I., Conder, K., Morawski, A., Lade, T. and Paszewin, A. (1994) Single crystals of Hg1-xPbxBa2Can-1CunO2n+1-δ and Infinite-Layer CaCuO2. Synthesis at Gas Pressure of 10 kbar, Properties and Structure. Physica C, 234, 10-18.
http://dx.doi.org/10.1016/0921-4534(94)90047-7
[36] Takano, M., Azuma, M., Bando, Y. and Takeda, Y. (1991) Superconductivity in the Ba-Sr-Cu-O System. Physica C, 176, 441-444.
[37] Teske, C.L. and Müller-Buschbaum, H. (1970) über Erdalkalimetallcuprate. V. Zur Kenntnis von Ca2CuO3 und SrCuO2. Zeitschrift für anorganische und allgemeine Chemie, 379, 234.
[38] Smith, M.G., Manthiram, A., Zhou, J., Goodenough, J.B. and Markert, J.T. (1991) Electron-Doped Superconductivity at 40 K in the Infinite-Layer Compound Sr1-yNdyCuO2. Nature, 351, 549-551.
http://dx.doi.org/10.1038/351549a0
[39] Er, G., Miyamoto, Y., Kanamaru, F. and Kikkawa, S. (1991) Superconductivity in the Infinite-Layer Compound Sr1-xLaxCuO2. Physica C, 181, 206-208. http://dx.doi.org/10.1016/0921-4534(91)90356-4
[40] Hiroi, Z., Azuma, M., Takano, M. and Bando, Y. (1991) A New Family of Copper Oxide Superconductors Srn+2CunO2n+1+δ Stabilized at High Pressure. Physica C, 188-189, 523-524.
http://dx.doi.org/10.1016/0921-4534(91)92064-I
[41] Azuma, M., Hiroi, Z., Takano, M., Bando, Y. and Takeda, Y. (1992) Superconductivity at 110 K in the Infinite-Layer Compound (Sr1-xCax)1-yCuO2. Nature, 356, 775-776.
http://dx.doi.org/10.1038/356775a0
[42] Hiroi, Z., Azuma, M., Takano, M. and Takeda, Y. (1993) Structure and Superconductivity in the Infinite-Layer Compound (Ca1-ySry)1-xCuO2-z. Physica C, 208, 286-296.
http://dx.doi.org/10.1016/0921-4534(93)90200-A
[43] Adachi, S., Yamauchi, H., Tanaka, S. and Mori, N. (1993) High-Pressure Synthesis of Superconducting Sr-Ca-Cu-O Samples. Physica C, 208, 226-230. http://dx.doi.org/10.1016/0921-4534(93)90192-S
[44] Adachi, S., Yamauchi, H., Tanaka, S. and Mori, N. (1993) New Superconducting Cuprates in the Sr-Ca-Cu-O System. Physica C, 212, 164-168. http://dx.doi.org/10.1016/0921-4534(93)90498-F
[45] Sugii, N., Ichikawa, M., Hayachi, K., Kubo, K., Yamamoto, K. and Yamauchi, H. (1993) Microstructure of the Infinite-Layer Structural Sr1-xCuO2-d Thin Films. Physica C, 213, 345-352.
http://dx.doi.org/10.1016/0921-4534(93)90451-U
[46] Li, X., Kanai, M., Kawai, T. and Kawai, S. (1993) Epixial Growth and Properties of Ca1-xSrxCuO2 Thin Films (x = 0.18 to 1.0) Prepared by Co-Deposition and Atomic Layer Stacking. Japanese Journal of Applied Physics, 31, L217-L220. http://dx.doi.org/10.1143/JJAP.31.L217
[47] Terashima, Y., Sato, R., Takeno, S., Nakamura, S. and Miura, T. (1993) Preparation of Epitaxial SrCuOx Thin Films with an Infinite-Layer Structure. Japanese Journal of Applied Physics, 32, L48-L50.
http://dx.doi.org/10.1143/JJAP.32.L48
[48] Maeda, T., Yoshimoto, M., Shimozono, K. and Koinuma, H. (1995) Two-Dimensional Laser Molecular Beam Epitaxy and Carrier Modulation of Infinite-Layer BaCuO2 Films. Superconductivity, 247, 142-146.
http://dx.doi.org/10.1016/0921-4534(95)00067-4
[49] Wang, J., Rak, Z., Zhang, F., Ewing, R.C. and Becker, U. (2011) Electronic Structure and Energetics of Tetragonal SrCuO2 and Its High-Pressure Superstructure Phase. Jounal of Physics: Condensed Matter, 23, Article ID: 465503.
[50] Kipka, R. and Müller-Buschbaum, H. (1977) über Oxocuprate. XX Ein Erdalkalimetallcuprat (II) mit geschlossenen Baueinheiten. Zeitschrift für Naturforschung, 32, 121.
[51] Weller, M.T. and Lines, D.R. (1989) Structure and Oxidation State Relationship in Ternary Copper Oxides. Journal of Solid State Chemistry, 82, 21-29. http://dx.doi.org/10.1016/0022-4596(89)90217-X
[52] Insausti, M., Lezama, L., Cortés, R., Gil de Muro, I., Rojo, T. and Arriortua, M.I. (1995) Evolution with Time of the Magnetic and Spectroscopic Properties of the BaCuO2+δ Phase. Study of Ba1-xSrxCuO2+δ Solid Solution. Solid State Communications, 93, 823-929.
http://dx.doi.org/10.1016/0038-1098(94)00876-0
[53] Wang, Z.-R., Wang, X.-L., Fernandez-Baca, J.A., Johnston, G.C. and Vaknin, D. (1994) Antiferromagnetic Ordering and Paramagnetic Behaviour of Ferromagnetic Cu6 and Cu18 Clusters in BaCuO2+x. Science, 264, 202-204. http://dx.doi.org/10.1126/science.264.5157.402

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.