Hypersound Absorption of Acoustic Phonons in a Degenerate Carbon Nanotube

DOI: 10.4236/graphene.2015.43007   PDF   HTML   XML   3,206 Downloads   3,816 Views   Citations


Absorption of acoustic phonons was studied in degenerate Carbon Nanotube (i.e. where the electrons are found close to the Fermi level). The calculation of the hypersound absorption coefficient () was done in the regime where (q is the acoustic phonon number and l is the electron mean free path). At T = 10K and θ > 0 (θ being scattering angle), the dependence of on acoustic wave number (q), frequency (ωq), and , (Vs and VD being the speed of sound and the drift velocity respectively) were analysed numerically at n = 0,±1,±2 (where n is an integer ) and presented graphically. It was observed that when γ < 0, the maximum amplification was attained at VD = 1.1Vs which occurred at E = 51.7V·cm-1. In the second harmonics, (n = ±2), the absorption obtained was compared to experimental measurement of acoustoelectric current via the Weinreich relation and the results qualitatively agreed with each other.

Share and Cite:

Dompreh, K. , Mensah, N. , Mensah, S. , Abukari, S. , Sam, F. and Edziah, R. (2015) Hypersound Absorption of Acoustic Phonons in a Degenerate Carbon Nanotube. Graphene, 4, 62-74. doi: 10.4236/graphene.2015.43007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
[2] Dresselhaus, M.S., Dresselhaus, G. and Jorio, A. (2004) Unusual Properties and Structure of Carbon Nannotubes. Annual Review of Materials Research, 34, 247-278.
[3] Saito, R., Dresselhaus, G. and Dresselhaus, M. (1998) Physical Properties of Carbon Nanotubes. Imperial College Press, London.
[4] Dresselhaus, M.S. and Eklund, P.C. (2000) Phonons in Carbon Nanotubes. Advances in Physics, 49, 705-814. http://dx.doi.org/10.1080/000187300413184
[5] LeRoy, B.J., Lemay, S.G., Kong, J. and Dekker, C. (2004) Electrical Generation and Absorption of Phonons in Carbon Nanotubes. Nature, 432, 371-374.
[6] Kim, J.-H., Nugraha, A.R.T., Booshehri, L.G., Haroz, E.H., Sato, K., Sanders, G.D., Yee, K.-J., Lim, Y.-S., Stanton, C.J., Saito, R. and Kono, J. (2013) Coherent Phonons in Carbon Nanotubes and Grapheme. Chemical Physics, 413, 55- 80.
[7] Small, J.P., Shi, L. and Kim, P. (2003) Mesoscopic Thermal and Thermoelectric Measurements of Individual Carbon Nanotubes. Solid State Communications, 127, 181-186. http://dx.doi.org/10.1016/S0038-1098(03)00341-7
[8] Kane, C.L., Thess, A., Mele, E.J., Smalley, R.E., Lee, R.S., Fischer, J.E., Verschueren, A.R.M., Petit, P., Tans, S.J., Dai, H. and Dekker, C. (1998) Temperature-Dependent Resistivity of Single-Wall Carbon Nanotubes. Europhysics Letters, 41, 683-688.
[9] Sanders, G.D., Nugraha, A.R.T., Sato, K., Kim, J.-H., Kono, J., Saito, R. and Stanton, C.J. (2013) Theory of Coherent Phonons in Carbon Nanotubes and Graphene Nanoribbons. Journal of Physics: Condensed Matter, 25, Article ID: 144201.
[10] Yao, Z., Kane, C.L. and Dekker, C. (2000) High-Field Electrical Transport in Single-Wall Carbon Nanotubes. Physical Review Letters, 84, Article ID: 2941.
[11] Dekker, C., Tans, S.J. and Verschueren, A.R.M. (1998) Room-Temperature Transistor Based on a Single Carbon Nanotube. Nature, 393, 49-52. http://dx.doi.org/10.1038/29954
[12] Kim, B.M., Chen, Y.-F. and Fuhrer, M.S. (2002) Single-Electron Detection and Memory Using a Single Carbon Nanotube Defect. The Exciting World of Nanocages and Nanotubes, 12, 541-548.
[13] Peng, S., O’Keeffe, J., Wei, C., Cho, K., Kong, J. and Chen, R. (2001) Carbon Nanotube Chemical and Mechanical Sensors. Proceedings of the 3rd International Workshop on SHM, Stanford, 12-14 September 2001.
[14] Mensah, S.Y., Allotey, F.K.A., Mensah, N.G. and Nkrumah, G. (2001) Differential Thermopower of a CNT Chiral Carbon Nanotube. Journal of Physics: Condensed Matter, 13, 5653-5662. http://dx.doi.org/10.1088/0953-8984/13/24/310
[15] Mensah, S.Y., Allotey, F.K.A., Mensah, N.G. and Nkrumah, G. (2003) Giant Electrical Power Factor in Single-Walled Chiral Carbon Nanotube. Superlattices and Microstructures, 33, 173-180. http://dx.doi.org/10.1016/S0749-6036(03)00070-3
[16] Mensah, S.Y., Twum, A., Mensah, N.G., Dompreh, K.A., Abukari, S.S. and Nkrumah-Buandoh, G. (2011) Effect of Laser on Thermopower of Chiral Carbon Nanotube.
[17] Mensah, N.G., Nkrumah, G., Mensah, S.Y. and Allotey, F.K.A. (2004) Temperature Dependence of the Thermal Conductivity in Chiral Carbon Nanotubes. Physics Letters A, 329, 369-378. http://dx.doi.org/10.1016/j.physleta.2004.06.100
[18] Shmelev, G.M., Anh, N.Q., Tsurkan, G.I. and Mensah, S.Y. (1984) “Currentless” Amplification of Hypersound in Planar Configuration by Inelastic Scattering of Electrons. Physica Status Solidi (b), 121, 209-213.
[19] Mensah, S.Y., Allotey, F.K.A. and Adjepong, S.K. (1994) The Effect of a High-Frequency Electric Field on Hypersound Amplification in a Superlattice. Journal of Physics: Condensed Matter, 6, 3479-3485. http://dx.doi.org/10.1088/0953-8984/6/19/003
[20] Parmenter, R.H. (1953) The Acousto-Electric Effect. Physical Review, 89, 990-998. http://dx.doi.org/10.1103/PhysRev.89.990
[21] Maao, F.A. and Galperin, Y. (1997) Acoustoelectric Effects in Quantum Constrictions. Physical Review B, 56, 4028- 4036. http://dx.doi.org/10.1103/PhysRevB.56.4028
[22] Grinberg, A.A. and Kramer, N.I. (1965) Acoustomagnetic Effect in Piezoelectric Semiconductors. Soviet Physics Doklady, 9, 552.
[23] Yamada, T. (1965) Acoustomagnetoelectric Effect in Bismuth. Journal of the Physical Society of Japan, 20, 1424- 1437. http://dx.doi.org/10.1143/JPSJ.20.1424
[24] Margulis, A.D. and Margulis, V.A. (1994) The Quantum Acoustomagnetoelectric Effect Due to Rayleigh Sound Waves. Journal of Physics: Condensed Matter, 6, 6139-6150.
[25] Mensah, S.Y. and Kangah, G.K. (1991) Amplification of Acoustic Waves Due to an External Temperature Gradient in Superlattices. Journal of Physics: Condensed Matter, 3, 4105-4107. http://dx.doi.org/10.1088/0953-8984/3/22/020
[26] Tolpygo, K.B. and Uritskii, Z.I. (1956) Article title. Zh. Eksp. Teor. Fiz., 30, 929.
[27] Weinreich, G. (1956) Acoustodynamic Effects in Semiconductors. Physical Review, 104, 321-324. http://dx.doi.org/10.1103/PhysRev.104.321
[28] Pomerantz, M. (1964) Amplification of Microwave Phonons in Germanium. Physical Review Letters, 13, 308-310. http://dx.doi.org/10.1103/PhysRevLett.13.308
[29] Mensah, S.Y., Allotey, F.K.A. and Adjepong, S.K. (1996) Acoustomagnetoelectric Effect in a Superlattice. Journal of Physics: Condensed Matter, 8, 1235-1239.
[30] Mensah, S.Y., Allotey, F.K.A. and Adjepong, S.K. (1994) Acoustoelectric Effect in Semiconductor Superlattice. Journal of Physics: Condensed Matter, 6, 6783-6787.
[31] Mensah, S.Y., Allotey, F.K.A. and Mensah, N.G. (2000) Nonlinear Acoustoelectric Effect in a Semiconductor Superlattice. Journal of Physics: Condensed Matter, 12, 5225-5232.
[32] Mensah, S.Y., Allotey, F.K.A., Mensah, N.G., Akrobotu, H. and Nkrumah, G. (2005) The Influence of External Electric Field on Acoustoelectric Effect in a Superlattice. Superlattices and Microstructures, 37, 87-97. http://dx.doi.org/10.1016/j.spmi.2004.07.003
[33] Mensah, S.Y., Allotey, F.K., Adjepong, S.K. and Mensah, N.G. (1997) Photostimulated Attenuation of Hypersound in Superlattices. Superlattices and Microstructures, 22, 453-457. http://dx.doi.org/10.1006/spmi.1996.0447
[34] Vyazovsky, M.V. and Syrodoev, G.A. (2005) Generation of Acoustic Phonons in Semiconductor Superlattice in the Case of an Intraband Absorption of Electromagnetic Wave. Radiophysics and Quantum Electronics, 48, 390-393.
[35] Bau, N.Q. and Hieu, N.V. (2014) The Influence of the Electromagnetic Wave on the Quantum Acoustomagnetoelectric Field in a Quantum Well with a Parabolic Potential. Proceedings of PIERS, Guangzhou, 25-28 August 2014.
[36] Shmelev, G.M. and Zung, H. (1977) Fiz. Proceci v Poluprovodnikov. Shttiinca, Kishinev.
[37] Azizyan, A.O. Izv. Akad Nauk. Arm. SSR. Fiz. 9 208.
[38] Rabiu, M., Mensah, S.Y., Abukari, S.S., Amekpewu, M., Sefa-Ntiri, B. and Twum, A. (2013) Generation and Propagation of Ultrasonic Waves in Piezoelectric Graphene Nanoribbon. Open Journal of Acoustics, 3, 38-42. http://dx.doi.org/10.4236/oja.2013.33A007
[39] Dompreh, K.A., Mensah, S.Y., Abukari, S.S., Sam, F. and Mensah, N.G. (2014) Amplification of Acoustic Waves in Graphene Nanoribbon in the Presence of External Electric and Magnetic Field. http://arxiv.org/abs/1410.8064
[40] Dompreh, K.A., Mensah, S.Y., Abukari, S.S., Edziah, R., Mensah, N.G. and Quaye, H.A. (2014) Acoustomagnetoelectric Effect in Graphene Nanoribbon in the Presence of External Electric and Magnetic Field. http://arxiv.org/abs/1412.1678
[41] Nghia, N.V., Bau, N.Q. and Vuong, D.Q. (2012) Calculation of the Acoustomagnetoelectric Field in Rectangular Quantum Wire with an Infinite Potential in the Presence of an External Magnetic Field. Proceedings of PIERS, Kuala Lumpur, 27-30 March 2012, 772-777.
[42] Komirenko, S.V., Kim, K.W., Demidenko, A.A., Kochelap, V.A. and Strocio, M.A. (1999) Cerenkov Generation of High-Frequency Confined Acoustic Phonons in Quantum Wells.
[43] Lee, Y.C. and Tzoar, N. (1969) Phonon Instability in a Magnetic Field. Physical Review, 178, 1303.
[44] Glavin, B.A., Kochelap, V.A., Linik, T.L. and Kim, K.W. (2002) Generation of High-Frequency of Cohenrent Acoustic Phonons in Superlattice under Hopping Transport in Linear Theory of Phonon Instability. Physical Review B, 65, Article ID: 085303.
[45] Ebbecke, J., Strobl, C.J. and Wixforth, A. (2004) Acoustoelectric Current Transport through Single-Walled Carbon Nanotubes. Physical Review B, 70, Article ID: 233401.
[46] Reulet, B., Kasumov, Y.A., Kociak, M., Deblock, R., Khodos, I.I., Gorbatov, Y.B., Volkov, V.T., Journet, C. and Bouchiat, H. (2000) Acoustoelectric Effect in Carbon Nanotubes. Physical Review Letters, 85, 2829-2832.
[47] Zhao, X.F., Zhang, J., Chen, S.M. and Xu, W. (2009) Cerenkov Acoustic-Phonon Emission Generated Electrically from a Polar Semiconductor. Journal of Applied Physics, 105, Article ID: 104514. http://dx.doi.org/10.1063/1.3130400
[48] Nunes, O.A.C. and Fonseca, A.L.A. (2012) Amplification of Hippersound in Graphene under External Direct Current Electric Field. Journal of Applied Physics, 112, Article ID: 043707.
[49] Mensah, S.Y., Allotey, F.K.A., Mensah, N.G. and Elloh, V.W. (2003) Amplification of Acoustic Phonons in a Degenerate Semiconductor Superlattice. Physica E, 19, 257-262.
[50] Mavrinsky, A.V. and Baitinger, E.M. (2009) Thermoelectric Power in Carbon Nanotubes. Semiconductors, 43, 480-484.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.