Agronomic and Energetic Potential of Biomass Sorghum Genotypes

Abstract

The biomass sorghum [Sorghum bicolor (L.) Moench], is an interesting crop considering the necessity to invest in alternative sources to generate renewable energy. The objective of this experiment was to identify sorghum biomass genotypes with greatest agronomic and energetic potential, and verify if there is phenotypic association between agronomic and technological properties in the hybrids. The study was conducted in three cities of the Minas Gerais State, Brazil (Lavras, Uberlandia and Sete Lagoas). It was evaluated 16 genotypes of sorghum biomass, being 14 of them sensitive hybrids to photoperiod and two cultivars, as control, insensitive to photoperiod. The experimental design was a triple lattice 4 × 4, with plots formed by four linear rows of 5.0 m. The morphoagronomic characteristics evaluated for the three environments were: days to flowering (FLOW), plant height (PH), number of stems (NS) and green matter production (GMP). In the experiment conducted in Lavras, also it was evaluated the agronomic traits: stem diameter (SD) and dry matter production (DMP) besides the technological traits: higher heating value (HHV), crude fiber (CF), neutral detergent fiber (NDF) and acid detergent fiber (ADF). The genotype × environment interaction was significant for all traits. The hybrids had superior performance compared to the control genotypes. Biomass sorghum hybrids, sensitive to photoperiod, when compared with commercial hybrids of forage sorghum, insensitive to photoperiod, had an average production of 34 t ha-1 dry matter with 62% humidity and higher heating value of 4.400 Kcal/Kg. There was no phenotypic correlation between agronomic and technological characters evaluated.

Share and Cite:

Rodrigues Castro, F. , Bruzi, A. , Rodrigues Nunes, J. , Costa Parrella, R. , Romeiro Lombardi, G. , Brant Albuquerque, C. and Lopes, M. (2015) Agronomic and Energetic Potential of Biomass Sorghum Genotypes. American Journal of Plant Sciences, 6, 1862-1873. doi: 10.4236/ajps.2015.611187.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Monk, R.L., Miller, F.R. and McBee, G.G. (1984) Sorghum Improvement for Energy Production. Biomass, 6, 145-153. http://dx.doi.org/10.1016/0144-4565(84)90017-9
[2] Carvalho, S.P. and Cruz, C.D. (1996) Diagnosis of Multicollinearity: Assessment of the Condition of Correlation Matrices Used in Genetic Studies. Brazilian Journal of Genetics, 19, 479-484.
[3] Dantas, A.A., Carvalho, L.G. and Ferreira, E. (2007) Classificação e tendências climáticas em Lavras, MG. Ciência e Agrotecnologia, 31, 1862-1866.
http://dx.doi.org/10.1590/S1413-70542007000600039
[4] Instituto Nacionalde Meteorologia (2014)
http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep
[5] Parrella, R.A.C., Schaffert, R.E., May, A., Emygdio, B., Portugal, A.F. and Damasceno, C.M.B. (2011) Desempenho agronômico de híbridos de sorgo biomassa. Sete Lagoas: Embrapa Milho e Sorgo, 19. Boletim de Pesquisa e Desenvolvimento, 41.
[6] Silva, D.J. (1981) Análise de alimentos (métodos químicos e biológicos). Viçosa, MG, UFV, 166.
[7] Van Soest, P.J. (1967) Development of a Comprehensive System of Feed Analyses and Its Application to Forages. Journal of Animal Science, 26, 119-128.
[8] Associação Brasileirade Normas Técnicas (1984) NBR 8633: Carvão vegetal: Determinação do poder calorífico. Rio de Janeiro.
[9] Statistical Analysis System (2012) SAS User’s Guide: Statistics. Version 9.3, Cary.
[10] Resende, M.D.V. and Duarte, J.B. (2007) Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 3, 182-194.
[11] Pimentel-Gomes, F. (1991) O índice de variação, um substituto vantajoso do coeficiente de variação. IPEF, Piracicaba, 4 p. (Circular técnica, 178.)
[12] Scott, A.J. and Knott, M.A. (1974) Cluster Analysis Methods for Grouping Means in the Analysis of Variance. Biometrics, 3, 507-512.
http://dx.doi.org/10.2307/2529204
[13] Cruz, C.D. and Carneiro, P.C.S. (2006) Modelos biométricos aplicados ao melhoramento genético. UFV, Viçosa, MG, 579.
[14] Parrella, R.A.C., Rodrigues, J.A.S., Tardin, F.D., Damasceno, C.M.B. and Schaffert, R.E. (2010) Desenvolvimento de híbridos de sorgo sensíveis ao fotoperíodo visando alta produtividade de biomassa. Embrapa Milho e Sorgo, Sete Lagoas, 25. (Boletim de Pesquisa e Desenvolvimento, 28.)
[15] Wight, J.P., Hons, F.M., Storlien, J.O., Provin, T.L., Shahandeh, H. and Wiedenfeld, R.P. (2012) Management Effects on Bioenergy Sorghum Growth, Yield and Nutrient Uptake. Biomass and Bioenergy, 46, 593-604.
http://dx.doi.org/10.1016/j.biombioe.2012.06.036
[16] Perazzo, A.F., de Carvalho, G.G.P., Santos, E.M., Pinho, R.M.A., Campo, F.S., Macedo, C.H.O., Azevêdo, J.A.G. and Tabosa, J.N. (2014) Agronomic Evaluation of 32 Sorghum Cultivars in the Brazilian Semi-Arid Region. Revista Brasileira de Zootecnia, 43, 232-237.
http://dx.doi.org/10.1590/S1516-35982014000500002
[17] Rooney, W.L. and Aydin, S. (1999) Genetic Control of a Photoperiod-Sensitive Response in Sorghum bicolor (L.) Moench. Crop Science, 39, 397-400.
http://dx.doi.org/10.2135/cropsci1999.0011183X0039000200016x
[18] Murphy, R.L., Morishige, T.D., Brady, J.A., William, L., Rooney, W.L., Yang, S., Klein, P.E. and Mullet, J.E. (2014) Ghd7 (Ma(6)) Represses Sorghum Flowering in Long Days: Ghd7 Alleles Enhance Biomass Accumulation and Grain Production. The Plant Genome, 7, 1-10.
[19] Yang, S., Weers, B.D., Morishige, D.T. and Mullet, J.E. (2014) CONSTANS Is a Photoperiod Regulated Activator of Flowering in Sorghum. BMC Plant Biology, 14, 148.
http://www.biomedcentral.com/1471-2229/14/148
http://dx.doi.org/10.1186/1471-2229-14-148
[20] Pereira, G.A., Parrella, R.A.C., Parrella, N.N.N.L.D., Sousa, V.F., Schaffert, R.E. and Costa, R.K. (2012) Desempenho agronômico de híbridos de sorgo biomassa. Proceedings of the Congresso Nacional de Milho e Sorgo, águas de Lindóia, 26 a 30 de Agosto de 2012.
[21] Olson, S.N., Ritter, K., Rooney, W., Kemanian, A., McCarl, B.A., Zhang, Y.Q., et al. (2012) High Biomass Yield Energy Sorghum: Developing a Genetic Model for C4 Grass Bioenergy Crops. Biofuels, Bioproducts and Biorefining, 6, 640-655.
[22] Durães, N.N.L., Nunes, J.A.R., Parrella, R.A.C., Bruzi, A.T., Lombardi, G.M.R. and Fagundes, T.G. (2013) Seleção de múltiplos caracteres agroindustriais em sorgo sacarino. Proceedings of the Congresso Brasileiro de Melhoramento de Plantas, Uberlandia, 5 a 8 de agosto de 2013, 1638-1641.
[23] Monteiro, M.C.D., Filho, C.J.A., Tabosa, J.N., Oliveira, F.J., Reis, O.V. and Bastos, G.Q. (2004) Avaliação do desempenho de sorgo forrageiro para o semiárido de Pernambuco. Revista Brasileira de Milho e Sorgo, 3, 52-61.
[24] Silva, F.F., Gonçalves, L.C., Rodrigues, J.A.S., Corrêa, C.E.S., Rodriguez, N.M., Brito, A.F. and Mourão, G.B. (1999) Qualidade de silagens de híbridos de sorgo (Sorghum bicolor (L.) Moench) de portes baixo, médio e alto com diferentes proporções de colmo+folhas/panícula. 1. Avaliação do processo fermentativo. Revista Brasileira de Zoot- ecnia, 28, 14-20.
http://dx.doi.org/10.1590/S1516-35981999000100003
[25] Zago, C.P. (1991) Cultura do sorgo para produção de silagem de alto valor nutritivo. In: Simpósio Sobre Nutrição de Bovinos, 4, Fundação de Estudos Agrários “Luiz de Queiroz”, Piracicaba, 169-217.
[26] Paula, L.E., Trugilho, P.F., Napoli, A. and Bianchi, M.L. (2011) Characterization of Residues from Plant Biomass for Use in Energy Generation. Cerne, 17, 237-246.
http://dx.doi.org/10.1590/S0104-77602011000200012
[27] Neumann, M.J., Restle, J., Filho, D.C.A., Brondani, I.L., Pellegrini, L.G. and Freitas, A.K. (2002) Avaliação do valor nutritivo da planta e da silagem de diferentes híbridos de sorgo (Sorghum bicolor, L. Moench). Revista Brasileira de Zootecnia, 31, 293-301.
http://dx.doi.org/10.1590/S1516-35982002000200002
[28] Damasceno, C.M.B., Parrella, R.A.C., Souza, V.F., Simeone, M.L.F. and Schaffert, R.E. (2013) Análise morfoagronômica e bioquímica de um painel de sorgo energia para características relacionadas à qualidade da biomassa. Embrapa, Sete Lagoas, 190.
[29] Lombardi, G.M.R., Nunes, J.A.R., Parrella, R.A.C., Bruzi, A.T., Durães, N.N.L. and Fagundes, T.G. (2013) Correlações fenotípicas e ambientais entre caracteres agroindustriais de sorgo sacarino.
http://ainfo.cnptia.embrapa.br/digital/bitstream/item/94606/1/Correlacoes-fenotipicas.pdf
[30] Miller, F.R. and McBee, G.G. (1993) Genetics and Management of Physiologic Systems of Sorghum for Biomass Production. Biomass and Bioenergy, 5, 41-49.
http://dx.doi.org/10.1016/0961-9534(93)90006-P

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.