[1]
|
Mehta, M.L. (1960) On the Statistical Properties of Level Spacings in Nuclear Spectra. Nuclear Physics, 18, 395-419.
http://dx.doi.org/10.1016/0029-5582(60)90413-2
|
[2]
|
Dyson, F.J. (1962) Statistical Theory of the Energy Levels of Complex Systems, I. Journal of Mathematical Physics, 3, 140. http://dx.doi.org/10.1063/1.1703773
|
[3]
|
Dyson, F.J. (1962) Statistical Theory of the Energy Levels of Complex Systems, II. Journal of Mathematical Physics, 3, 157. http://dx.doi.org/10.1063/1.1703774
|
[4]
|
Dyson, F.J. (1962) Statistical Theory of the Energy Levels of Complex Systems, III. Journal of Mathematical Physics, 3, 166. http://dx.doi.org/10.1063/1.1703775
|
[5]
|
Dyson, F.J. (1962) A Brownian Motion Model for the Eigenvalues of a Random Matrix. Journal of Mathematical Physics, 3, 1191. http://dx.doi.org/10.1063/1.1703862
|
[6]
|
Mehta, M.L. (1991) Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York.
|
[7]
|
Bohigas, O., Giannoni, M.J. and Schmit, C. (1984) Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuations Laws. Physical Review Letters, 52, 1. http://dx.doi.org/10.1103/PhysRevLett.52.1
|
[8]
|
Bohigas, O. and Giannoni, M.J. (1983) Chaotic Motion and Random Matrix Theories. Lecture Notes in Physics, 209, 1-99. http://dx.doi.org/10.1007/3-540-13392-5_1
|
[9]
|
Casati, G., Valz-Gris, F. and Guarnieri, I. (1980) On the Connection between Quantization of Nonintegrable Systems and Statistical Theory of Spectra. Lettere al Nuovo Cimento, 28, 279. http://dx.doi.org/10.1007/BF02798790
|
[10]
|
Blümel, R. and Reinhardt, W.P. (1997) Chaos in Atomic Physics. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511524509
|
[11]
|
Stöckmann, H.J. (1999) Quantum Chaos. Cambridge University Press, Cambridge.
|
[12]
|
Guhr, T., Müller-Groeling, A. and Weidenmüller, H.A. (1998) Random-Matrix Theories in Quantum Physics: Common Concepts. Physics Reports, 299, 189-425. http://dx.doi.org/10.1016/S0370-1573(97)00088-4
|
[13]
|
Haake, F. (2001) Quantum Signatures of Chaos. Springer, Berlin. http://dx.doi.org/10.1007/978-3-662-04506-0
|
[14]
|
Robnik, M. (1986) Antiunitary Symmetries and Energy Level Statistics. Lecture Notes in Physics, 263, 120-130.
http://dx.doi.org/10.1007/3-540-17171-1_9
|
[15]
|
Berry, M.V. (1985) Semiclassical Theory of Spectral Rigidity. Proceedings of the Royal Society of London A, 400, 229.
http://dx.doi.org/10.1098/rspa.1985.0078
|
[16]
|
Berry, M.V. (1987) The Bakerian Lecture: Quantum Chaology. Proceedings of the Royal Society of London A, 413, 183. http://dx.doi.org/10.1098/rspa.1987.0109
|
[17]
|
Sieber, M. and Richter, K. (2001) Correlations between Periodic Orbits and Their Rôle in Spectral Statistics. Physica Scripta, T90, 128. http://dx.doi.org/10.1238/Physica.Topical.090a00128
|
[18]
|
Müller, S., Heusler, S., Braun, P., Haake, F. and Altland, A. (2005) Periodic-Orbit Theory of Universality in Quantum Chaos. Physical Review E, 72, Article ID: 046207. http://dx.doi.org/10.1103/PhysRevE.72.046207
|
[19]
|
Müller, S., Heusler, S., Braun, P., Haake, F. and Altland, A. (2004) Semiclassical Foundation of Universality in Quantum Chaos. Physical Review Letters, 93, Article ID: 014103. http://dx.doi.org/10.1103/PhysRevLett.93.014103
|
[20]
|
Keating, J.P. and Müller, S. (2007) Resummation and the Semiclassical Theory of Spectral Statistics. Proceedings of the Royal Society of London A, 463, 3241-3250. http://dx.doi.org/10.1098/rspa.2007.0178
|
[21]
|
Bunimovich, L.A. and Sinai, Y.G. (1981) Statistical Properties of Lorentz Gas with Periodic Configuration of Scatterers. Communications in Mathematical Physics, 78, 479-497. http://dx.doi.org/10.1007/BF02046760
|
[22]
|
Burton, R. and Denker, M. (1987) On the Central Limit Theorem for Dynamical Systems. Transactions of the American Mathematical Society, 302, 715. http://dx.doi.org/10.1090/S0002-9947-1987-0891642-6
|
[23]
|
Bunimovich, L.A., Sinai, Y.G. and Chernov, N.I. (1991) Statistical Properties of Two-Dimensional Hyperbolic Billiards. Russian Mathematical Surveys, 46, 47-106. http://dx.doi.org/10.1070/RM1991v046n04ABEH002827
|
[24]
|
Chernov, N.I. (1994) Statistical Properties of the Periodic Lorentz Gas. Multidimensional Case. Journal of Statistical Physics, 74, 11-53. http://dx.doi.org/10.1007/BF02186805
|
[25]
|
Liverani, C. (1995) Ergodicity in Hamiltonian Systems. Proceedings of the International Congress on Dynamical Systems, Montevideo, 56. http://dx.doi.org/10.1007/978-3-642-61215-2_3
|
[26]
|
Chernov, N.I. (1995) Limit Theorems and Markov Approximations for Chaotic Dynamical Systems. Probability Theory and Related Fields, 101, 321-362. http://dx.doi.org/10.1007/BF01200500
|
[27]
|
Gaspard, P. (1998) Chaos, Scattering and Statistical Mechanics. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511628856
|
[28]
|
Argaman, N., Dittes, F.M., Doron, E., Keating, J.P., Kitaev, A.Y., Sieber, M. and Smilansky, U. (1993) Correlations in the Actions of Periodic Orbits Derived from Quantum Chaos. Physical Review Letters, 71, 4326-4329.
http://dx.doi.org/10.1103/PhysRevLett.71.4326
|
[29]
|
Dittes, F.M., Doron, E. and Smilansky, U. (1994) Long-Time Behaviour of the Semiclassical Baker’s Map. Physical Review E, 49, R963-R966. http://dx.doi.org/10.1103/PhysRevE.49.R963
|
[30]
|
Aurich, R. and Sieber, M. (1994] An Exponentially Increasing Semiclassical Spectral Form Factor for a Class of Chaotic Systems. Journal of Physics A: Mathematical and General, 27, 1967-1979.
http://dx.doi.org/10.1088/0305-4470/27/6/021
|
[31]
|
Cohen, D., Primack, H. and Smilansky, U. (1998) Quantal—Classical Duality and the Semiclassical Trace Formula. Annals of Physics, 264, 108-170. http://dx.doi.org/10.1006/aphy.1997.5776
|
[32]
|
Tanner, G. (1999) Periodic Orbit Action Correlations in the Baker Map. Journal of Physics A: Mathematical and General, 32, 5071-5085. http://dx.doi.org/10.1088/0305-4470/32/27/307
|
[33]
|
Sano, M.M. (2000) Statistical Properties of Actions of Periodic Orbits. Chaos, 10, 195.
http://dx.doi.org/10.1063/1.166485
|
[34]
|
Primack, H. and Smilansky, U. (2000) The Quantum Three-Dimensional Sinai Billiard—A Semiclassical Analysis. Physics Reports, 327, 1-107. http://dx.doi.org/10.1016/S0370-1573(99)00093-9
|
[35]
|
Smilansky, U. and Verdene, B. (2003) Action Correlations and Random Matrix Theory. Journal of Physics A: Mathematical and General, 36, 3525-3549. http://dx.doi.org/10.1088/0305-4470/36/12/338
|
[36]
|
Laprise, J.F., Blondeau-Fournier, O., Kröger, J., Kröger, H., St.-Louis, P.Y., Dubé, L.J., Endress, E., Burra, A., Zomorrodi, R., Melkonyan, G. and Moriarty, K.J.M. (2008) Universality of Level Spacing Distributions in Classical Chaos. Physics Letters A, 372, 4574-4577. http://dx.doi.org/10.1016/j.physleta.2008.04.044
|
[37]
|
Laprise, J.F., Hosseinizadeh, A., Lamy-Poirier, J., Zomorrodi, R., Kröger, J. and Kröger, H., (2010) Universality in Level Spacing Fluctuations of a Chaotic Optical Billiard. Physics Letters A, 374, 2000-2004.
http://dx.doi.org/10.1016/j.physleta.2010.02.057
|
[38]
|
Alekseev, V.M. and Yakobson, M.V. (1981) Symbolic Dynamics and Hyperbolic Dynamic Systems. Physics Reports, 75, 290-325. http://dx.doi.org/10.1016/0370-1573(81)90186-1
|
[39]
|
Berry, M.V. and Tabor, M. (1977) Level Clustering in the Regular Spectrum. Proceedings of the Royal Society of London A, 356, 375-394. http://dx.doi.org/10.1098/rspa.1977.0140
|
[40]
|
Casati, G., Chirikov, B.V. and Guarneri, I. (1985) Energy-Level Statistics of Integrable Quantum Systems. Physical Review Letters, 54, 1350-1353. http://dx.doi.org/10.1103/PhysRevLett.54.1350
|
[41]
|
Seligman, T.H. and Verbaarschot, J.J.M. (1986) Energy-Level Statistics of Integrable Quantum Systems. Physical Review Letters, 56, 2767. http://dx.doi.org/10.1103/PhysRevLett.56.2767
|
[42]
|
Chakrabarti, B. and Hu, B. (2003) Level Correlation in Coupled Harmonic Oscillator Systems. Physics Letters A, 315, 93-100. http://dx.doi.org/10.1016/S0375-9601(03)01001-6
|
[43]
|
Chernov, N. (1997) Entropy, Lyapunov Exponents, and Mean Free Path for Billiards. Journal of Statistical Physics, 88, 1-29. http://dx.doi.org/10.1007/BF02508462
|
[44]
|
Sinai, Y.G. (1963) On the Foundations of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics. Soviet Mathematics Doklady, 4, 1818.
|
[45]
|
Bruus, H. and d’Auriac, J.C.A. (1997) Energy Level Statistics of the Two-Dimensional Hubbard Model at Low Filling. Physical Review B, 55, 9142-9159. http://dx.doi.org/10.1103/PhysRevB.55.9142
|
[46]
|
Seligman, T.H., Verbaarschot, J.J.M. and Zirnbauer, M.R. (1984) Quantum Spectra and Transition from Regular to Chaotic Classical Motion. Physical Review Letters, 53, 215-217. http://dx.doi.org/10.1103/PhysRevLett.53.215
|
[47]
|
Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A. and Wong, S.S.M. (1981) Random-Matrix Physics: Spectrum and Strength Fluctuations. Reviews of Modern Physics, 53, 385-479.
http://dx.doi.org/10.1103/RevModPhys.53.385
|
[48]
|
Bunimovich, L.A. (1974) On Ergodic Properties of Certain Billiards. Functional Analysis and Its Applications, 8, 73-74.
|
[49]
|
Bunimovich, L.A. (1979) On the Ergodic Properties of Nowhere Dispersing Billiards. Communications in Mathematical Physics, 65, 295-312. http://dx.doi.org/10.1007/BF01197884
|
[50]
|
Bohigas, O., Haq, R.U. and Pandey, A. (1983) Fluctuation Properties of Nuclear Energy Levels and Widths: Comparison of Theory with Experiment. In: Böckhoff, K.H., Ed., Nuclear Data for Science and Technology, Reidel, Dordrecht, 809-813.
|
[51]
|
Szász, D. and Varjú, T. (2007) Limit Laws and Recurrence for the Planar Lorentz Process with Infinite Horizon. Journal of Statistical Physics, 129, 59-80. http://dx.doi.org/10.1007/s10955-007-9367-0
|
[52]
|
Chernov, N. and Markarian, R. (2006) Chaotic Billiards. Mathematical Surveys and Monographs, American Mathematical Society, Providence, Vol. 127, 7.2.
|
[53]
|
Bálint, P. and Gouëzel, S. (2006) Limit Theorems in the Stadium Billiard. Communications in Mathematical Physics, 263, 461-512. http://dx.doi.org/10.1007/s00220-005-1511-6
|
[54]
|
Borgonovi, F., Casati, G. and Li, B. (1996) Diffusion and Localization in Chaotic Billiards. Physical Review Letters, 77, 4744-4747. http://dx.doi.org/10.1103/PhysRevLett.77.4744
|
[55]
|
Jirari, H., Kröger, H., Luo, X.Q., Moriarty, K.J.M. and Rubin, S.G. (2001) Closed Path Integrals and the Quantum Action. Physical Review Letters, 86, 187-191. http://dx.doi.org/10.1103/PhysRevLett.86.187
|
[56]
|
Caron, L.A., Jirari, H., Kröger, H., Luo, X.Q., Melkonyan, G. and Moriarty, K.J.M. (2001) Quantum Chaos at Finite Temperature. Physics Letters A, 288, 145-153. http://dx.doi.org/10.1016/S0375-9601(01)00555-2
|