Universality in Statistical Measures of Trajectories in Classical Billiard Systems

DOI: 10.4236/am.2015.68132   PDF   HTML   XML   2,958 Downloads   3,466 Views   Citations


For classical billiards, we suggest that a matrix of action or length of trajectories in conjunction with statistical measures, level spacing distribution and spectral rigidity, can be used to distinguish chaotic from integrable systems. As examples of 2D chaotic billiards, we considered the Bunimovich stadium billiard and the Sinai billiard. In the level spacing distribution and spectral rigidity, we found GOE behaviour consistent with predictions from random matrix theory. We studied transport properties and computed a diffusion coefficient. For the Sinai billiard, we found normal diffusion, while the stadium billiard showed anomalous diffusion behaviour. As example of a 2D integrable billiard, we considered the rectangular billiard. We found very rigid behaviour with strongly correlated spectra similar to a Dirac comb. These findings present numerical evidence for universality in level spacing fluctuations to hold in classically integrable systems and in classically fully chaotic systems.

Share and Cite:

Laprise, J. , Hosseinizadeh, A. and Kröger, H. (2015) Universality in Statistical Measures of Trajectories in Classical Billiard Systems. Applied Mathematics, 6, 1407-1425. doi: 10.4236/am.2015.68132.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mehta, M.L. (1960) On the Statistical Properties of Level Spacings in Nuclear Spectra. Nuclear Physics, 18, 395-419.
[2] Dyson, F.J. (1962) Statistical Theory of the Energy Levels of Complex Systems, I. Journal of Mathematical Physics, 3, 140.
[3] Dyson, F.J. (1962) Statistical Theory of the Energy Levels of Complex Systems, II. Journal of Mathematical Physics, 3, 157.
[4] Dyson, F.J. (1962) Statistical Theory of the Energy Levels of Complex Systems, III. Journal of Mathematical Physics, 3, 166.
[5] Dyson, F.J. (1962) A Brownian Motion Model for the Eigenvalues of a Random Matrix. Journal of Mathematical Physics, 3, 1191.
[6] Mehta, M.L. (1991) Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York.
[7] Bohigas, O., Giannoni, M.J. and Schmit, C. (1984) Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuations Laws. Physical Review Letters, 52, 1.
[8] Bohigas, O. and Giannoni, M.J. (1983) Chaotic Motion and Random Matrix Theories. Lecture Notes in Physics, 209, 1-99.
[9] Casati, G., Valz-Gris, F. and Guarnieri, I. (1980) On the Connection between Quantization of Nonintegrable Systems and Statistical Theory of Spectra. Lettere al Nuovo Cimento, 28, 279.
[10] Blümel, R. and Reinhardt, W.P. (1997) Chaos in Atomic Physics. Cambridge University Press, Cambridge.
[11] Stöckmann, H.J. (1999) Quantum Chaos. Cambridge University Press, Cambridge.
[12] Guhr, T., Müller-Groeling, A. and Weidenmüller, H.A. (1998) Random-Matrix Theories in Quantum Physics: Common Concepts. Physics Reports, 299, 189-425.
[13] Haake, F. (2001) Quantum Signatures of Chaos. Springer, Berlin.
[14] Robnik, M. (1986) Antiunitary Symmetries and Energy Level Statistics. Lecture Notes in Physics, 263, 120-130.
[15] Berry, M.V. (1985) Semiclassical Theory of Spectral Rigidity. Proceedings of the Royal Society of London A, 400, 229.
[16] Berry, M.V. (1987) The Bakerian Lecture: Quantum Chaology. Proceedings of the Royal Society of London A, 413, 183.
[17] Sieber, M. and Richter, K. (2001) Correlations between Periodic Orbits and Their Rôle in Spectral Statistics. Physica Scripta, T90, 128.
[18] Müller, S., Heusler, S., Braun, P., Haake, F. and Altland, A. (2005) Periodic-Orbit Theory of Universality in Quantum Chaos. Physical Review E, 72, Article ID: 046207.
[19] Müller, S., Heusler, S., Braun, P., Haake, F. and Altland, A. (2004) Semiclassical Foundation of Universality in Quantum Chaos. Physical Review Letters, 93, Article ID: 014103.
[20] Keating, J.P. and Müller, S. (2007) Resummation and the Semiclassical Theory of Spectral Statistics. Proceedings of the Royal Society of London A, 463, 3241-3250.
[21] Bunimovich, L.A. and Sinai, Y.G. (1981) Statistical Properties of Lorentz Gas with Periodic Configuration of Scatterers. Communications in Mathematical Physics, 78, 479-497.
[22] Burton, R. and Denker, M. (1987) On the Central Limit Theorem for Dynamical Systems. Transactions of the American Mathematical Society, 302, 715.
[23] Bunimovich, L.A., Sinai, Y.G. and Chernov, N.I. (1991) Statistical Properties of Two-Dimensional Hyperbolic Billiards. Russian Mathematical Surveys, 46, 47-106.
[24] Chernov, N.I. (1994) Statistical Properties of the Periodic Lorentz Gas. Multidimensional Case. Journal of Statistical Physics, 74, 11-53.
[25] Liverani, C. (1995) Ergodicity in Hamiltonian Systems. Proceedings of the International Congress on Dynamical Systems, Montevideo, 56.
[26] Chernov, N.I. (1995) Limit Theorems and Markov Approximations for Chaotic Dynamical Systems. Probability Theory and Related Fields, 101, 321-362.
[27] Gaspard, P. (1998) Chaos, Scattering and Statistical Mechanics. Cambridge University Press, Cambridge.
[28] Argaman, N., Dittes, F.M., Doron, E., Keating, J.P., Kitaev, A.Y., Sieber, M. and Smilansky, U. (1993) Correlations in the Actions of Periodic Orbits Derived from Quantum Chaos. Physical Review Letters, 71, 4326-4329.
[29] Dittes, F.M., Doron, E. and Smilansky, U. (1994) Long-Time Behaviour of the Semiclassical Baker’s Map. Physical Review E, 49, R963-R966.
[30] Aurich, R. and Sieber, M. (1994] An Exponentially Increasing Semiclassical Spectral Form Factor for a Class of Chaotic Systems. Journal of Physics A: Mathematical and General, 27, 1967-1979.
[31] Cohen, D., Primack, H. and Smilansky, U. (1998) Quantal—Classical Duality and the Semiclassical Trace Formula. Annals of Physics, 264, 108-170.
[32] Tanner, G. (1999) Periodic Orbit Action Correlations in the Baker Map. Journal of Physics A: Mathematical and General, 32, 5071-5085.
[33] Sano, M.M. (2000) Statistical Properties of Actions of Periodic Orbits. Chaos, 10, 195.
[34] Primack, H. and Smilansky, U. (2000) The Quantum Three-Dimensional Sinai Billiard—A Semiclassical Analysis. Physics Reports, 327, 1-107.
[35] Smilansky, U. and Verdene, B. (2003) Action Correlations and Random Matrix Theory. Journal of Physics A: Mathematical and General, 36, 3525-3549.
[36] Laprise, J.F., Blondeau-Fournier, O., Kröger, J., Kröger, H., St.-Louis, P.Y., Dubé, L.J., Endress, E., Burra, A., Zomorrodi, R., Melkonyan, G. and Moriarty, K.J.M. (2008) Universality of Level Spacing Distributions in Classical Chaos. Physics Letters A, 372, 4574-4577.
[37] Laprise, J.F., Hosseinizadeh, A., Lamy-Poirier, J., Zomorrodi, R., Kröger, J. and Kröger, H., (2010) Universality in Level Spacing Fluctuations of a Chaotic Optical Billiard. Physics Letters A, 374, 2000-2004.
[38] Alekseev, V.M. and Yakobson, M.V. (1981) Symbolic Dynamics and Hyperbolic Dynamic Systems. Physics Reports, 75, 290-325.
[39] Berry, M.V. and Tabor, M. (1977) Level Clustering in the Regular Spectrum. Proceedings of the Royal Society of London A, 356, 375-394.
[40] Casati, G., Chirikov, B.V. and Guarneri, I. (1985) Energy-Level Statistics of Integrable Quantum Systems. Physical Review Letters, 54, 1350-1353.
[41] Seligman, T.H. and Verbaarschot, J.J.M. (1986) Energy-Level Statistics of Integrable Quantum Systems. Physical Review Letters, 56, 2767.
[42] Chakrabarti, B. and Hu, B. (2003) Level Correlation in Coupled Harmonic Oscillator Systems. Physics Letters A, 315, 93-100.
[43] Chernov, N. (1997) Entropy, Lyapunov Exponents, and Mean Free Path for Billiards. Journal of Statistical Physics, 88, 1-29.
[44] Sinai, Y.G. (1963) On the Foundations of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics. Soviet Mathematics Doklady, 4, 1818.
[45] Bruus, H. and d’Auriac, J.C.A. (1997) Energy Level Statistics of the Two-Dimensional Hubbard Model at Low Filling. Physical Review B, 55, 9142-9159.
[46] Seligman, T.H., Verbaarschot, J.J.M. and Zirnbauer, M.R. (1984) Quantum Spectra and Transition from Regular to Chaotic Classical Motion. Physical Review Letters, 53, 215-217.
[47] Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A. and Wong, S.S.M. (1981) Random-Matrix Physics: Spectrum and Strength Fluctuations. Reviews of Modern Physics, 53, 385-479.
[48] Bunimovich, L.A. (1974) On Ergodic Properties of Certain Billiards. Functional Analysis and Its Applications, 8, 73-74.
[49] Bunimovich, L.A. (1979) On the Ergodic Properties of Nowhere Dispersing Billiards. Communications in Mathematical Physics, 65, 295-312.
[50] Bohigas, O., Haq, R.U. and Pandey, A. (1983) Fluctuation Properties of Nuclear Energy Levels and Widths: Comparison of Theory with Experiment. In: Böckhoff, K.H., Ed., Nuclear Data for Science and Technology, Reidel, Dordrecht, 809-813.
[51] Szász, D. and Varjú, T. (2007) Limit Laws and Recurrence for the Planar Lorentz Process with Infinite Horizon. Journal of Statistical Physics, 129, 59-80.
[52] Chernov, N. and Markarian, R. (2006) Chaotic Billiards. Mathematical Surveys and Monographs, American Mathematical Society, Providence, Vol. 127, 7.2.
[53] Bálint, P. and Gouëzel, S. (2006) Limit Theorems in the Stadium Billiard. Communications in Mathematical Physics, 263, 461-512.
[54] Borgonovi, F., Casati, G. and Li, B. (1996) Diffusion and Localization in Chaotic Billiards. Physical Review Letters, 77, 4744-4747.
[55] Jirari, H., Kröger, H., Luo, X.Q., Moriarty, K.J.M. and Rubin, S.G. (2001) Closed Path Integrals and the Quantum Action. Physical Review Letters, 86, 187-191.
[56] Caron, L.A., Jirari, H., Kröger, H., Luo, X.Q., Melkonyan, G. and Moriarty, K.J.M. (2001) Quantum Chaos at Finite Temperature. Physics Letters A, 288, 145-153.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.