Dielectric and Magnetic Properties of Nano-Structure BiFeO3 Doped with Different Concentrations of Co Ions Prepared by Sol-Gel Method

DOI: 10.4236/njgc.2015.53008   PDF   HTML   XML   4,814 Downloads   5,800 Views   Citations

Abstract

BiFe1-xCoxO3 (x = 0, 0.03, 0.05 and 0.1) symbolic as (BFO, BF3CO, BF5CO and BF10CO) in powder form has been prepared by sol-gel technique using ethylenediamine tetraacetic acid (EDTA) as a chelating agent. X-ray diffraction (XRD) and FTIR analysis showed rhombohedra distorted BiFeO3 structure with compressive lattice distortion induced by the Co substitution at Fe sites. The transmission electron microscope (TEM) shows irregular particles. The additive of cobalt oxide has led to grains refining giving the following crystallite sizes of 18 nm for BF5Co. The scanning electron microscope (SEM) study reveals that the samples morphology shows relatively uniform grain size distribution. The dielectric properties of BiFeO3 nano-particles in the frequency range of 1 up to 5 MHz at RT revealed that the A.C. conductivity of the prepared samples reaches its maximum value in BF5CO. By decreasing BiFeO3 particle size as a result of doping with different Co ion concentrations, an enhancement in magnetization and a simultaneous suppression in current leakage occurred. The remnant magnetization Mr of BiFe1-xCoxO3 (x = 0, 0.03, 0.05, 0.1) ceramics significantly enhanced, which provides potential applications in information storage.

Share and Cite:

Batttisha, I. , Farag, I. , Kamal, M. , Ahmed, M. , Girgis, E. , Desouki, F. , Meleegi, H. and Desouki, F. (2015) Dielectric and Magnetic Properties of Nano-Structure BiFeO3 Doped with Different Concentrations of Co Ions Prepared by Sol-Gel Method. New Journal of Glass and Ceramics, 5, 59-73. doi: 10.4236/njgc.2015.53008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bhushan, B., Basumallick, A., Vasanthacharya, N.Y., Kumar, S. and Das, D. (2010) Sr Induced Modification of Structural, Optical and Magnetic Properties in Bi1-xSrxFeO3 (x = 0, 0.01, 0.03, 0.05 and 0.07) Multiferroic Nanoparticles. Solid State Sciences, 12, 1063-1069.
http://dx.doi.org/10.1016/j.solidstatesciences.2010.04.026
[2] Li, B., Wanga, C., Liu, W., Ye, M. and Wang, N.G. (2013) Multiferroic Properties of La and Mn Co-Doped BiFeO3 Nano Fibers by Sol-Gel and Electro Spinning Technique. Materials Letters, 90, 45-48.
http://dx.doi.org/10.1016/j.matlet.2012.09.012
[3] Bhushan, B., Das, D., Priyamc, A., Vasanthacharya, N.Y. and Kumar, S. (2012) Enhancing the Magnetic Characteristics of BiFeO3 Nanoparticles by Ca, Ba Co-Doping Centre for Applied Physics. Materials Chemistry and Physics, 135, 144-149.
http://dx.doi.org/10.1016/j.matchemphys.2012.04.037
[4] Annapu Reddy, V., Patha, N.P. and Nath, R. (2012) Particle Size Dependent Magnetic Properties and Phase Transitions in Multiferroic BiFeO3 Nano-Particles. Journal of Alloys and Compounds, 543, 206-212.
http://dx.doi.org/10.1016/j.jallcom.2012.07.098
[5] You, S.J., Ai, L., Li, D., Huang, H.M., Chen, W.P., Liu, W., Guo, S.S. and Zhao, X.Z. (2013) Enhanced Electrical Properties of Composite Nanostructures Using BiFeO3 Nanotubes and Ferroelectric Co-Polymers. Materials Letters, 94, 183-185.
http://dx.doi.org/10.1016/j.matlet.2012.12.056
[6] Safi, R. and Shokrollahi, H. (2012) Physics, Chemistry and Synthesis Methods of Nanostructured Bismuth Ferrite (BiFeO3) as a Ferroelectro-Magnetic Material. Progress in Solid State Chemistry, 40, 6-15.
http://dx.doi.org/10.1016/j.progsolidstchem.2012.03.001
[7] Batttisha, I.K., Farag, I.S.A., Kamal, M., Ahmed, M.A., Girgis, E., El Meleegi, H.A. and El Desouky, F.G. (2014) Structural and Multiferroic Properties of (Fe-Co) Co-Doped Ba0.9Sr0.1TiO3 Solids Prepared by Sol Gel Technique. New Journal of Glass and Ceramics, 4, 19-28.
http://dx.doi.org/10.4236/njgc.2014.42003
[8] Abdel Aal, A., Hammad, T.R., Zawrah, M., Abou Hammad, A.B. and Battisha, I.K. (2014) FT-IR Study of Nano- Structure Perovskite BaTiO3 Doped with Both Fe3+ and Ni2+ Ions Prepared by Sol-Gel Technique. Acta Physica Polonica, A, 126, 1318.
http://dx.doi.org/10.12693/APhysPolA.126.1318
[9] Willander, M., Nur, O., Israr, M.Q., Abou Hamad, A.B., Abd El Maksoud, F.G., Salem, M.A. and Battisha, I.K. (2012) Development of A.C. Conductivity of Nano-Composite Perovskite Ba(1-x-y)Sr(x)Ti Fe(y)O3 Prepared by the Sol-Gel Technique. Journal of Crystallization Process and Technology (JCPT), 2, 1-11.
http://dx.doi.org/10.4236/jcpt.2012.21001
[10] Nur, O., Willander, M., Israr, M.Q., El Desouky, F.G., Salem, M.A., Battisha, I.K. and Abou Hamad, A.B. (2012) Effect of Elevated Concentrations of Strontium and Iron on the Structural and Dielectric Characteristics of Ba(1-x-y) Sr(x)Ti Fe(y)O3 Prepared through Sol-Gel Technique. Physica B: Physics of Condensed Matter, 407, 2697-2704.
http://dx.doi.org/10.1016/j.physb.2012.03.023
[11] Wu, J. and Wang, J. (2010) Multiferroic, Optical, and Fatigue Behavior of BiFeO3 Thin Films with a Sintering Aid of CuO. Electrochemical and Solid-State Letters, 13, G68-G70.
[12] Bhushan, B., Das, D., Priyam, A., Vasanthacharya, N.Y. and Kumar, S. (2012) Enhancing the Magnetic Characteristics of BiFeO3 Nanoparticles by Ca, Ba Co-Doping. Materials Chemistry and Physics, 135, 144-149.
http://dx.doi.org/10.1016/j.matchemphys.2012.04.037
[13] Safi, R. and Shokrollahi, H. (2012) Physics, Chemistry and Synthesis Methods of Nanostructured Bismuth Ferrite (BiFeO3) as a Ferroelectro-Magnetic Material. Progress in Solid State Chemistry, 40, 6-15.
http://dx.doi.org/10.1016/j.progsolidstchem.2012.03.001
[14] Picozzi, S. and Ederer, C. (2009) First Principles Studies of Multiferroic Materials. Journal of Physics: Condensed Matter, 21, 303201-303219.
http://dx.doi.org/10.1088/0953-8984/21/30/303201
[15] Shimada, T., Uratani, Y. and Kitamura, T. (2012) Vacancy-Driven Ferromagnetism in Ferroelectric PbTiO3. Applied Physics Letters, 100, 162901-162903.
http://dx.doi.org/10.1063/1.4704362
[16] Dormann, J.L. and Nogues, M. (1990) Magnetic Structures in Substituted Ferrites. Journal of Physics: Condensed Matter, 2, 1233-123.
http://dx.doi.org/10.1088/0953-8984/2/5/014
[17] Park, T.J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R. and Wong, S.S. (2007) Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles. NanoLetters, 7, 766-772.
http://dx.doi.org/10.1021/nl063039w
[18] You, S.J., Ai, L., Li, D., Huang, H.M., Chen, W.P., Liu, W., Guo, S.S. and Zhao, X.Z. (2013) Enhanced Electrical Properties of Composite Nanostructures Using BiFeO3 Nano-Tube Sand Ferroelectric Copolymers. Materials Letters, 94, 183-185.
http://dx.doi.org/10.1016/j.matlet.2012.12.056
[19] Cullity, B.D. and Graham, C.D. (2009) Introduction to Magnetic Materials. John Wiley & Sons, Inc., Hoboken.
[20] Zhou, J.P., Wang, P.F., Qiu, Z.C., Zhu, G.Q. and Liu, P. (2008) Flower-Like Pb(Zr0.52Ti0.48)O3 Nanoparticles on the CoFe2O4 Seeds. Journal of Crystal Growth, 310, 508-512.
http://dx.doi.org/10.1016/j.jcrysgro.2007.10.066
[21] Eerenstein, W., Mathur, N.D. and Scott, J.F. (2006) Multiferroic and Magnetoelectric Materials. Nature Journal, 442, 759-765.
[22] Gajek, M., et al. (2005) Spin Filtering through Ferromagnetic BiMnO3 Tunnel Barriers. Physical Review B, 72, 020406(R).
http://dx.doi.org/10.1103/PhysRevB.72.020406
[23] Bush, A.A., Fetisov, Y.K., Kamentsev, K.E., Meshcheryakov, V.F. and Srinivasan, G. (2003) Magnetic and Microwave Properties of (Ni, Co)Fe2O4-Ferroelectric and (La,Ca,Sr)MnO3-Ferroelectricmultilayer Structures. Journal of Magnetism and Magnetic Materials, 258-259, 45-47.
http://dx.doi.org/10.1016/S0304-8853(02)01008-9

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.