Expression of Multidrug Resistance ATP-Binding Cassette (ABC) Transporters in Canine Mammary Tumors
Breno S. Salgado1,2*, Suely Nonogaki3, Luisa M. Soares4, Angela Akamatsu5, Cristiano R. N. da Silva5, Thiago P. Anacleto5, Rodolfo Malagó5, Rafael M. Rocha3, Fátima Gärtner2, Noeme S. Rocha1,4
1Departamento de Patologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Campus de Botucatu, Botucatu, Brazil.
2Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (Intitute of Biomedical Sciences Abel Salazar of University of Porto), Oporto, Portugal.
3Fundacao Antonio Prudente, Hospital A.C. Camargo, Sao Paulo, Brazil.
4Departamento de Clínica Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, UNESP,. Botucatu, Brazil.
5Hospital Escola de Medicina Veterinária, Fundacao de Ensino e Pesquisa de Itajubá—FEPI, Itajubá, Brazil.
DOI: 10.4236/abcr.2015.43009   PDF    HTML     4,631 Downloads   5,426 Views   Citations

Abstract

Mammary neoplasms are the most common tumors in female dogs. They are usually treated using solely surgical mastectomy—which is recognized as unsatisfactory in many cases. Given this, the benefits of chemotherapy in dogs with mammary cancer need to be further explored. Some drugs that can be used for treating canines with mammary tumors may be substrates of uptake and/or efflux transporters such as the ATP-binding cassette (ABC) transporters. Unfortunately, very little is known regarding the pathobiology of such proteins in canine tumors, including mammary cancer. Accordingly, this study was designed to characterize the expression of ABC transporters P-glycoprotein, MRP1, and MRP2 and their relation with clinicopathologic factors in order to allow a better understanding of their influence in canine mammary cancer. P-glycoprotein was expressed in tumors from 55.8% of patients, while MRP1 and MRP2 were expressed in 37.2% and 39.5% of tumors, respectively. P-glycoprotein expression showed to be related with regional lymph node spread (P = 0.0038), as well as with tumor grade (P = 0.0353) and with a shorter survival (P = 0.0245). MRP1 revealed a strong association with a higher histological grade (P < 0.0001) and overall survival (P = 0.0002). Additionally, MRP1 was determined as prognostic indicator independent of lymph node status using Cox proportional-hazards regression multivariate analysis (P = 0.0216). No relations between MRP2 and clinicopathologic features were observed. We have found that P-glycoprotein and MRP1 are expressed in highly aggressive canine mammary tumors and are related with poor prognosis. Our results suggest that they may play a significant role in the course of canine mammary cancer progression and be promising candidate markers for a validation study on therapy outcome.

Share and Cite:

Salgado, B. , Nonogaki, S. , Soares, L. , Akamatsu, A. , Silva, C. , Anacleto, T. , Malagó, R. , Rocha, R. , Gärtner, F. and Rocha, N. (2015) Expression of Multidrug Resistance ATP-Binding Cassette (ABC) Transporters in Canine Mammary Tumors. Advances in Breast Cancer Research, 4, 77-85. doi: 10.4236/abcr.2015.43009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Misdorp, W. (2001) Tumors of the Mammary Gland. In: Meuten, D.J., Ed., Tumors in Domestic Animals, Blackweel Publishing Company, Ames, 75-606.
[2] Lana, S.E., Rutteman, G.R. and Withrow, S.J. (2007) Tumors of the Mammary Gland. In: Withrow, S.J. and Vail, D.M., Eds., Withrow and MacEwen’s Small Animal Clinical Oncology, 4th Edition, Saunders Elsevier, St. Louis, 619-638.
http://dx.doi.org/10.1016/b978-072160558-6.50029-0
[3] Gama, A., Gartner, F., Alves, A. and Schmitt, F. (2009) Immunohistochemical Expression of Epidermal Growth Factor Receptor (EGFR) in Canine Mammary Tissues. Research in Veterinary Science, 87, 432-437.
http://dx.doi.org/10.1016/j.rvsc.2009.04.016
[4] Terragni, R., Gardini, A.C., Sabattini, S., Bettini, G., Amadori, D., Talamonti, C., Vignoli, M., Capelli, L., Saunders, J.H., Ricci, M. and Ulivi, P. (2014) EGFR, HER-2 and KRAS in Canine Gastric Epithelial Tumors: A Potential Human Model? PLoS ONE, 9, 1-7.
http://dx.doi.org/10.1371/journal.pone.0085388
[5] Lee, C.-H., Kim, W.-H., Lim, J.-H., Kang, M.-S., Kim, D.-Y. and Kweon, O.-K. (2004) Mutation and Overexpression of p53 as a Prognostic Factor in Canine Mammary Tumors. Journal of Veterinary Science, 5, 63-69.
http://dx.doi.org/10.1292/jvms.66.63
[6] Koltai, Z. and Valjdovich, P. (2014) Expression of Multidrug Resistance Membrane Transporter (Pgp) and p53 Protein in Canine Mammary Tumours. Acta Veterinaria Hungarica, 2, 194-204.
http://dx.doi.org/10.1556/AVet.2014.002
[7] Trock, B.J., Leonessa, F. and Clarke, R. (1997) Multidrug Resistance in Breast Cancer: A Meta-Analysis of MDR1/gp170 Expression and Its Possible Functional Significance. The Journal of the National Cancer Institute, 89, 917-931.
http://dx.doi.org/10.1093/jnci/89.13.917
[8] Abolhoda, A., Wilson, A.E., Ross, H., Danenberg, P.V., Burt, M. and Scotto, K.W. (1999) Rapid Activation of MDR1 Gene Expression in Human Metastatic Sarcoma after in Vivo Exposure to Doxorubicin. Clinical Cancer Research, 5, 3352-3356.
[9] Wenzel, J.J., Piehler, A. and Kaminski, W.E. (2007) ABC A-Subclass Proteins: Gatekeepers of Cellular Phospho- and Sphin-Golipid Transport. Frontiers in Bioscience, 12, 3177-3193.
http://dx.doi.org/10.2741/2305
[10] Amiri-Kordestani, L., Basseville, A., Kurdziel, K., Fojo, A.T. and Bates, S.E. (2012) Targeting MDR in Breast and Lung Cancer: Discriminating Its Potential Importance from the Failure of Drug Resistance Reversal Studies. Drug Resistance Updates, 15, 50-61.
http://dx.doi.org/10.1016/j.drup.2012.02.002
[11] Hedditch, E.L., Gao, B., Russel, A.J., Lu, Y., Emmanuel, C., Beesley, J., Johnatty, S.E., Chen, X., Harnett, P., George, J., Williams, R.T., Flemming, C., Lambrechts, D., Despierre, E., Lambrechts, S., Vergote, I., Karlan, B., Lester, J., Orsulic, S., Walsh, C., Fasching, P., Beckmann, M.W., Ekici, A.B., Hein, A., Matsuo, K., Hosono, S., Nakanishi, T., Yatabe, Y., Pejovic, T., Bean, Y., Heitz, F., Harter, P., Du Bois, A., Schwaab, I., Hogdall, E., Kjaer, S.K., Jensen, A., Hogdall, C., Lundvall, L., Engelholm, S.A., Brown, B., Flanagan, J., Metcalf, M.D., Siddiqui, N., Sellers, T., Fridley, B., Cunningham, J., Schidkraut, J., Iversen, E., Weber, R.P., Berchuck, A., Goode, E., Bowtee, D.D., Chenevix-Trench, G., Defazio, A., Norris, M.D., Macgregor, S., Haber, M. and Henderson, M.J. (2014) ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer. The Journal of the National Cancer Institute, 7, 1-11.
http://dx.doi.org/10.1093/jnci/dju149
[12] Higgins, C.F. (1992) ABC Transporters: From Microorganisms to Man. Annual Review of Cell Biology, 8, 67-113.
http://dx.doi.org/10.1146/annurev.cb.08.110192.000435
[13] Elston, C.W. and Ellis, I.O. (1991) Pathological Prognostic Factors in Breast Cancer. I. The Value of Histological Grade in Breast Cancer: Experience from a Large Study with Long-Term Follow-Up. Histopathology, 19, 403-410.
http://dx.doi.org/10.1111/j.1365-2559.1991.tb00229.x
[14] Kim, N.-H., Hwang, Y.-H., Im, K.-S., Kim, J.-H., Chon, S.-K., Kim, H.-Y. and Sur, J.-H. (2012) P-Glycoprotein Expression in Canine Mammary Gland Tumours Related with Myoepithelial Cells. Research in Veterinary Science, 93, 1346-1352.
http://dx.doi.org/10.1016/j.rvsc.2012.04.004
[15] van den Elsen, J.M.H., Kuntz, D.A., Hoedemaeker, F.J. and Rose, D.R. (1999) Antibody C219 Recognizes an Alpha-Helical Epitope on P-Glycoprotein. Proceeding of the National Academy of Sciences of the United States of America, 96, 13679-13684.
http://dx.doi.org/10.1073/pnas.96.24.13679
[16] Fletcher, J.I., Haber, M., Henderson, M.J. and Norris, M.D. (2010) ABC Transporters in Cancer: More than Just Drug Efflux Pumps. Nature Reviews Cancer, 10, 147-156.
http://dx.doi.org/10.1038/nrc2789
[17] Petterino, C., Rossetti, E., Bertoncello, D., Martini, M., Zappulli, V., Bargelloni, L. and Castagnaro, M. (2006) Immunohistochemical Detection of P-Glycoprotein (Clone C494) in Canine Mammary Gland Tumours. Journal of Veterinary Medicine Series A, 53, 174-178.
http://dx.doi.org/10.1111/j.1439-0442.2006.00810.x
[18] Beck, J., Bohnet, B., Brugger, D., Bader, P., Dietl, J., Scheper, R.J., Kandolf, R., Liu, C., Niethammer, D. and Gekeler, V. (1998) Multiple Gene Expression Analysis Reveals Distinct Differences between G2 and G3 Stage Breast Cancers and Correlations of PKC Eta with MDR1, MRP and LRP Gene Expression. British Journal of Cancer, 77, 87-91.
http://dx.doi.org/10.1038/bjc.1998.13
[19] Ferrero, J.M., Etienne, M.C., Formento, J.L., Francoual, M., Rostagno, P., Peyrottes, I., Ettore, F., Teissier, E., Leblanc-Talent, P., Namer, M. and Milano, G. (2000) Application of an Original RT PCR-ELISA Multiplex Assay for MDR1 and MRP, along with p53 Determination in Node-Positive Breast Cancer Patients. British Journal of Cancer, 82, 171-177.
[20] Filipitis, M., Suchomel, R.W., Dekan, G., Haider, K., Valdimarsson, G., Depisch, D. and Pirker, R. (1996) MRP and MDR1 Gene Expression in Primary Breast Carcinomas. Clinical Cancer Research, 2, 1231-1237.
http://dx.doi.org/10.1016/0959-8049(96)84850-7
[21] Nooter, K., Brutel de la Riviere, G., Look, M.P., van Wingerden, K.E., Henzen-Logmans, S.C., Scheper, R.J., Flens, M.J., Klijn, J.G., Stoter, G. and Foekens, J.A. (1997) The Prognostic Significance of Expression of the Multidrug Resistance-Associated Protein (MRP) in Primary Breast Cancer. British Journal of Cancer, 76, 486-493.
http://dx.doi.org/10.1038/bjc.1997.414
[22] Sun, S.-S., Hsieh, J.-F., Tsai, S.-C., Ho, Y.-J., Lee, J.-K. and Kao, C.-H. (2000) Expression of Mediated P-Glycoprotein Multidrug Resistance Related to Tc-99m MIBI Scintimammography Results. Cancer Letters, 153, 95-100.
http://dx.doi.org/10.1016/S0304-3835(00)00356-6
[23] Goto, H., Keshelava, N., Matthay, K.K., Lukens, J.N., Gerbing, R.B., Stram, D.O., Seeger, R.C. and Reynolds, C.P. (2000) Multidrug Resistance-Associated Protein 1 (MRP1) Expression in Neuroblastoma Cell Lines and Primary Tumors. Medical and Pediatric Oncology, 35, 619-622.
http://dx.doi.org/10.1002/1096-911X(20001201)35:6<619::AID-MPO28>3.0.CO;2-H
[24] Ferreira, M.J.U., Gyemant, N., Madureira, A.M., Tanaka, M., Koos, K., Didziapetris, R. and Molnar, J. (2005) The Effects of Jatrophane Derivatives on the Reversion of MDR1- and MRP-Mediated Multidrug Resistance in the MDA-MB-231 (HTB-26) Cell Line. Anticancer Research, 25, 4173-4178.
[25] Nakai, E., Park, K., Yawata, T., Chihara, T., Kumazawa, A., Nakabavashi, H. and Shimizu, K. (2009) Enhanced MDR1 Expression and Chemoresistance of Cancer Stem Cells Derived from Glioblastoma. Cancer Investigation, 27, 901-908.
http://dx.doi.org/10.3109/07357900801946679
[26] Pawlowski, K.M., Mucha, J., Majchrzak, K., Motyl, T. and Król, M. (2013) Expression and Role of PGP, BCRP, MRP1 and MRP3 in Multidrug Resistance of Canine Mammary Cancer Cells. BMC Veterinary Research, 9, 119.
http://dx.doi.org/10.1186/1746-6148-9-119
[27] Gaspar, L.F.J., Ferreira, I., Colodel, M., Brandao, C.V.S. and Rocha, N.S. (2010) Spontaneous Canine Transmissible venereal Tumor: Cell Morphology and Influence on P-Glycoprotein Expression. Turkish Journal of Veterinary Animal Science, 34, 447-454.
[28] Teng, S.-H., Hsu, W.-L., Chiu, C.-Y., Wong, M.-L. and Chang, S.-C. (2012) Overexpression of P-Glycoprotein, STAT3, Phospho-STAT3 and KIT in Spontaneous Canine Cutaneous Mast Cell Tumours before and after Prednisolone Treatment. The Veterinary Journal, 193, 551-556.
http://dx.doi.org/10.1016/j.tvjl.2012.01.033
[29] Hinoshita, E., Uchiumi, T., Taguchi, K., Kinukawa, N., Tsuneyoshi, M., Maehara, Y., Sugimachi, K. and Kuwano, M. (2000) Increased Expression of an ATP-Binding Cassette Superfamily Transporter, Multidrug Resistance Protein 2, in Human Colorectal Carcinomas. Clinical Cancer Research, 6, 2401-2407.
[30] Young, L.C., Campling B.G., Cole, S.P., Deeley, R.G. and Gerlach, J.H. (2001) Multidrug Resistance Proteins MRP3, MRP1, and MRP2 in Lung Cancer: Correlation of Protein Levels with Drug Response and Messenger RNA Levels. Clinical Cancer Research, 7, 1798-1804
[31] Choi, H.-K., Yang, J.-W., Roh, S.-H., Han, C.-Y. and Kang, K.-W. (2007) Induction of Multidrug Resistance Associated Protein 2 in Tamoxifen-Resistant Breast Cancer Cells. Endocrine-Related Cancer, 14, 293-303.
http://dx.doi.org/10.1677/ERC-06-0016
[32] Ota, S., Ishii, G., Goto, K., Kubota, K., Kim, Y.-H., Kojika, M., Murata, Y., Yamazi, M., Nishiwaki, Y., Eguchi, K. and Ochiai, A. (2009) Immunohistochemical Expression of BCRP and ERCC1 in Biopsy Specimen Predicts Survival in Advanced Non-Small-Cell Lung Cancer Treated with Cisplatin-Based Chemotherapy. Lung Cancer, 64, 98-104.
http://dx.doi.org/10.1016/j.lungcan.2008.07.014
[33] Tian, C., Ambrosone, C.B., Darcy, K.M., Krivak, T.C., Armstrong, D.K., Bookman, M.A., Davis, W., Zhao, H., Moysich, K., Gallion, H. and DeLoia, J.A. (2012) Common Variants in ABCB1, ABCC2 and ABCG2 Genes and Clinical Outcomes among Women with Advanced Stage Ovarian Cancer Treated with Platinum and Taxane-Based Chemotherapy: A Gynecologic Oncology Group Study. Gynecologic Oncology, 124, 575-581.
http://dx.doi.org/10.1016/j.ygyno.2011.11.022

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.