Microrheology and Release Behaviors of Self-Assembled Steroid Hydrogels

DOI: 10.4236/msce.2015.38002   PDF   HTML   XML   2,711 Downloads   3,421 Views   Citations


A hydrogel is formed by the self-assembly of sodium deoxycholate (NaDC) in aqueous solution with sodium chloride at pH-7.0. The NaDC hydrogel made of the three-dimensional network of nanofibers shows pH-dependent swelling behaviors. Polystyrene particles with a diameter of 100 nm and doxorubicin hydrochloride (DOX) can be easily loaded into the NaDC hydrogel through swelling. By using the loaded polystyrene particles as a light scattering probe, we study the microrheology of the NaDC hydrogel, showing complex viscoelastic properties. The viscous component dominates at both low and high frequencies, while the elastic component dominates in the intermediate range. The cavity size of the nanofiber network can also be estimated to be ~180 nm. We show that the loaded DOX can be slowly released from the hydrogels into aqueous solution. The release profile of DOX is found to depend on the pH value of the solution.

Share and Cite:

Liang, W. , Guman-Sepulveda, J. , He, S. , Dogariu, A. and Fang, J. (2015) Microrheology and Release Behaviors of Self-Assembled Steroid Hydrogels. Journal of Materials Science and Chemical Engineering, 3, 6-15. doi: 10.4236/msce.2015.38002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dastidar, P. (2008) Supramolecular Gelling Agents: Can They Be Designed? Chemical Society Reviews, 37, 2699-2715.
[2] van Esch, J.H. (2009) We Can Design Molecular Gelators, But Do We Understand Them? Langmuir, 25, 8392-8394.
[3] Svobodová, H., Noponen, V., Kolehmainen, K. and Sievnen, E. (2012) Recent Advances in Steroidal Supramolecular Gels. RSC Advances, 2, 4985-5007.
[4] Buerklea, L.E. and Rowan, S.J. (2012) Supramolecular Gels Formed From Multi-Component Low Molecular Weight Species. Chemical Society Reviews, 41, 6089-6102.
[5] Babu, S.S., Praveen, V.K. and Ajayaghosh, A. (2014) Functional Π-Gelators and Their Applications. Chemical Reviews, 114, 1973-2129.
[6] Hofmann, A.F. and Small, D.M. (1967) Detergent Properties of Bile Salts: Correlation with Physiological Function. Annual Review of Medicine, 18, 333-376.
[7] Mukhopadhyay, S. and Maitra, U. (2004) Chemistry and Biology of Bile Acids. Current Science, 87, 1666-1683.
[8] Terech, P. and Talmon, Y. (2002) Aqueous Suspensions of Steroid Nanotubules: Structural and Rheological Characterizations. Langmuir, 18, 7240-7244.
[9] Terech, P., Sangeetha, N.M., Demé, B. and Maitra, U. (2005) Self-Assembled Networks of Ribbons in Molecular Hydrogels of Cationic Deoxycholic Acid Analogues. Journal Physics Chemistry B, 109, 12270-12276.
[10] Qiao, Y., Lin, Y., Yang, Z., Chen, H., Zhang, S., Yan, Y. and Huang, J. (2010) Unique Temperature-Dependent Supramolecular Self-Assembly: From Hierarchical 1D Nanostructures to Super Hydrogel. Journal Physics Chemistry B, 114, 11725-11730.
[11] Mangisi, N., Leggio, C., Jover, A.J., Meijide, F., Pavel, N.V., Tellini, V.H.S., Tato, J.V., Agostino, R.G. and Galantini, L. (2010) Catanionic Tubules with Tunable Charge. Angewandte Chemie International Edition, 49, 6604-6607.
[12] Pal, A., Basit, H., Sen, S., Aswal, V.K. and Bhattacharya, S.J. (2009) Structure and Properties of Two Component Hydrogels Comprising Lithocholic Acid and Organic Amines. Journal of Materials Chemistry, 19, 4325-4334.
[13] Zhang, X., Zou, J., Tamhane, K., Kobzeff, F. and Fang, J.Y. (2010) Self-Assembly of pH-Switchable Spiral Tubes: Supramolecular Chemical Springs. Small, 6, 217-220.
[14] Tamhane, K., Zhang, X., Zou, J. and Fang, J.Y. (2010) Assembly and Disassembly of Tubular Spherulites. Soft Matter, 6, 1224-1228.
[15] Meijide, F., Antelo, A., Alcalde, M.A., Jover, A., Galantini, L., Pavel, N.V. and Tato, J.V. (2010) Supramolecular Structures Generated by Ap-Tert-Butylphenylamide Derivative of Deoxycholic Acid. From Planar Sheets to Tubular Structures through Helical Ribbons. Langmuir, 26, 7768-7773.
[16] Liu, C., Cui, J., Song, A. and Hao, J. (2011) A Bile Acid-Induced Aggregation Transition and Rheological Properties in Its Mixtures with Alkyltrimethylammonium Hydroxide. Soft Matter, 7, 8952-8960.
[17] Zhang, X., Bera, T., Liang, W. and Fang J.Y. (2011) Longitudinal Zipping/Unzipping of Self-Assembled Organic Tubes. Journal Physics Chemistry B, 115, 14445-14459.
[18] Terech, P., Velu, S.K.P., Pernot, P. and Wiegart, L. (2012) Salt Effects in The Formation of Self-Assembled Lithocholate Helical Ribbons and Tubes. Journal Physics Chemistry B, 116, 11344-11355.
[19] Chakrabarty, A., Maitra, U. and Das, A.D. (2012) Metal Cholate Hydrogels: Versatile Supramolecular Systems for Nanoparticle Embedded Soft Hybrid Materials. Journal of Materials Chemistry, 22, 18268-18274.
[20] di Gregorio, M.C., .Pavel, M.C., Miragaya, J., Jover, A., Meijide, F., Tato, J.V., Tellini, V.H.S. and Galantini, L. (2013) Catanionic Gels Based on Cholic Acid Derivatives. Langmuir, 29, 12342-12351.
[21] Wang, H., Xu, W., Song, S., Feng, L., Song, A. and Hao, J. (2014) Hydrogels Facilitated by Monovalent Cations and Their Use as Efficient Dye Adsorbents. Journal Physics Chemistry B, 118, 4693-4701.

[22] Sun, X., Xin, X., Tang, N., Guo, L., Wang, L. and Xu, G. (2014) Manipulation of the Gel Behavior of Biological Surfactant Sodium Deoxycholate by Amino Acids. Journal Physics Chemistry B, 4, 118, 824-832.
[23] Rich, A. and Blow, D.B. (1958) Formation of a Helical Steroid Complex. Nature, 182, 423-427.
[24] Blow, D.B. and Rich, A. (1960) Studies on the Formation of Helical Deoxycholate Complexes1, 2. Journal of American Chemistry Society, 82, 3566-3571.
[25] Jover, A., Meijide, F., Nunez, E.R. and Tato, J.V. (1996) Unusual Pyrene Excimer Formation during Sodium Deoxycholate Gelation. Langmuir, 12, 1789-1793.
[26] Ritger, P.L. and Peppas, N.A. (1987) A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. Journal of Controlled Release, 5, 23-36.
[27] Mason, T.G. and Weitz, D.A. (1995) Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids. Physical Review Letters, 74, 1250-1253.
[28] Gardel, M.L., Valentine, M.T. and Weitz, D.A. (2003) Microrheology. In: Breuer, K., Ed., Microscale Diagnostic Techniques, Springer-Verlag, New York.
[29] Popescu, G. and Dogariu, A. (2001) Dynamic Light Scattering in Localized Coherence Volumes. Optics Letters, 26, 551-553.
[30] Popescu, G., Dogariu, A. and Rajagopalan, R. (2002) Spatially Resolved Microrheology Using Localized Coherence Volumes. Physical Review E, 65, Article ID: 041504.
[31] Sohn, I.S., Rajagopalan, R. and Dogariu, A.C. (2004) Spatially Resolved Microrheology through a Liquid/Liquid Interface. Journal of Colloid. Interface Science, 269, 503-513.
[32] Berne, B.J. and Pecora, R. (2000) Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Courier Dover Publications, Mineola.
[33] Jvan Zanten, H. and Rufener, K.P. (2000) Brownian Motion in a Single Relaxation Time Maxwell Fluid. Physical Review E, 62, 5389-5396.
[34] Bellour, M., Skouri, M., Munch, J.P. and Hébraud, P. (2002) Brownian Motion of Particles Embedded in a Solution of Giant Micelles. European Physical Journal E, 8, 431-436.
[35] Galvan-Miyoshi, J. Delgado, J. and Castillo, R. (2008) Diffusing Wave Spectroscopy in Maxwellian Fluids. European Physical Journal E, 26, 369-377.
[36] Mason, T.G. (2000) Estimating the Viscoelastic Moduli of Complex Fluids Using the Generalized Stokes-Einstein Equation. Rheologica Acta, 39, 371-378.
[37] Mason, T.G., Gang, H. and Weitz, D.A. (1997) Diffusing-Wave-Spectroscopy Measurements of Viscoelasticity of Complex Fluids. Journal of the Optical Society of American, 14, 139-149.
[38] Palmer, A., Mason, T.G., Xu, J., Kuo, S.C. and Wirtz, D. (1999) Diffusing Wave Spectroscopy Microrheology of Actin Filament Networks. Biophysical Journal, 76, 1063-1071.
[39] Narita, T., Knaebel, A., Munch, J.P. and Candau, S.J. (2001) Microrheology of Poly(vinyl alcohol) Aqueous Solutions and Chemically Cross-Linked Gels. Macromolecules, 34, 8224-8231.
[40] Xu, J., Tseng, Y., Carriere, C.J. and Wirtz, D. (2002) Microheterogeneity and Microrheology of Wheat Gliadin Suspensions Studied by Multiple-Particle Tracking. Biomacromolecules, 3, 92-99.
[41] Cardinaux, F., Cipelletti, L., Scheffold, F. and Schurtenberger, P. (2002) Microrheology of Giant-Micelle Solutions. Europhysics Letters, 57, 738-744.
[42] Shikata, T., Hirata, H. and Kotaka, T. (1987) Micelle Formation of Detergent Molecules in Aqueous Media: Wiscoelastic Properties of Aqueous Cetyltrimethylammonium Bromide Solutions. Langmuir, 3, 1081-1086.
[43] Berret, J.F., Appell, A. and Porte, G. (1993) Linear Rheology of Entangled Wormlike Micelles. Langmuir, 9, 2851- 2854.
[44] Edwards, S.F. and Doi, M. (1986) The Theory of Polymer Dynamics. Clarendon, Oxford.
[45] Granek, R. and Cates, M.E. (1992) Stress Relaxation in Living Polymers: Results from a Poisson Renewal Model. Journal of Chemical Physics, 96, 4758-4767.
[46] Sarmiento-Gomez, E., Santamaria-Holek, I. and Castillo, R. (2014) Mean-Square Displacement of Particles in Slightly Interconnected Polymer Networks. Journal Physics Chemistry B, 118, 1146-1158.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.