Quantum Statistical Properties of the Interactions of Atom-Field Entanglement between Conducting Plates

DOI: 10.4236/jmp.2011.27085   PDF   HTML   XML   4,569 Downloads   7,465 Views   Citations


The electromagnetic field inside perfectly conducting parallel plates interacting with two-level atom is investigated. The cavity modes are firstly quantized, allowing the effective Hamiltonian to be evaluated for an electric dipole located at an arbitrary point. Some statistical aspect of this effective Hamiltonian such as the temporal evolution of the atomic inversion and the von Neuman entropy are presented. Theses aspects are sensitive to the changes of the distance between the two plates, which control the number of the propagating of the cavity modes.

Share and Cite:

E. Khalil, "Quantum Statistical Properties of the Interactions of Atom-Field Entanglement between Conducting Plates," Journal of Modern Physics, Vol. 2 No. 7, 2011, pp. 724-729. doi: 10.4236/jmp.2011.27085.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Nielsen and I. Chuang, “Quantum Computation and Information,” Cambridge University Press, Cambridge, 2000.
[2] D. Bouwmeester, A. Ekert and A. Zeilinger, Eds., “The Physics of Quantum Information,” Springer, Berlin, 2000.
[3] E. T. Jaynes and F. W. Cummings, “Comparison of Quantum and Semiclassical Radiation Theory with Application to the Beam Maser,” Proceedings of IEEE, Vol. 51, No. 1, 1963, pp. 89-109. doi:10.1109/PROC.1963.1664
[4] S. J. D. Phoenix and P. L. Knight, “Establishment of an Entangled Atom-Field State in the Jaynes-Cummings Model,” Physical Review A, Vol. 44, No. 9, 1991, pp. 6023-6029. doi:10.1103/PhysRevA.44.6023
[5] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Physical Review Letters, Vol. 75, No. 24, 1995, pp. 4337-4342. doi:10.1103/PhysRevLett.75.4337
[6] E. Hagley, X. Ma?tre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond and S. Haroche, “Generation of Einstein-Podolsky-Rosen Pairs of Atoms,” Physical Review Letters, Vol. 79, No. 1, 1997, pp. 1-15. doi:10.1103/PhysRevLett.79.1
[7] Q. A. Turchette , C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic Entanglement of Two Trapped Ions,” Physical Review Letters, Vol. 81, No. 17, 1998, pp. 3631-3638. doi:10.1103/PhysRevLett.81.3631
[8] A. Beige, D. Braun, B. Tregenna and P. L. Knight, “Quantum Computing Using Dissipation to Remain in a Decoherence-Free Subspace,” Physical Review Letters, Vol. 85, No. 8, 2000, pp. 1762-1767. doi:10.1103/PhysRevLett.85.1762
[9] S. Sorensen and K. Molmer, “Probabilistic Generation of Entanglement in Optical Cavities,” Physical Review Letters, Vol. 90, No. 12, 2003, pp. 127903-127908. doi:10.1103/PhysRevLett.90.127903
[10] C. Marr, A. Beige and G. Rempe, “Entangled-State Preparation via Dissipation-Assisted Adiabatic Passages,” Physical Review A, Vol. 68, No. 3, 2003, pp. 033817- 033822. doi:10.1103/PhysRevA.68.033817
[11] J. I. Cirac, P. Zoller, H. J. Kimble and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Physical Review Letters, Vol. 78, No. 16, 1997, pp. 3221-3226. doi:10.1103/PhysRevLett.78.3221
[12] K. Molmer, “Entanglement of Distant Atoms by a Continuous Supply of Quantum Correlated Photons,” Optics Communications, Vol. 179, No. 1-6, 2000, pp. 429-435.
[13] X.-L. Feng, X.-D. Li, S.-Q. Gong and Z.-Z. Xu, “Entangling Distant Atoms by Interference of Polarized Photons,” Physical Review Letters, Vol. 90, No. 21, 2003, pp. 217902-217907. doi:10.1103/PhysRevLett.90.217902
[14] E. Browne, M. B. Plenio and S. F. Huelga, “Robust Creation of Entanglement between Ions in Spatially Separate Cavities,” Physical Review Letters, Vol. 91, No. 6, 2003, pp. 067901-067906. doi:10.1103/PhysRevLett.91.067901
[15] B. Kraus and J. I. Cirac, “Discrete Entanglement Distribution with Squeezed Light,” Physical Review Letters, Vol. 92, No. 1, 2004, pp. 013602-013608. doi:10.1103/PhysRevLett.92.013602
[16] S. A. Al-Awfi and E. M. Khalil, “Atom-Field Entanglement between Conducting Plates,” International Review of Physics, Vol. 3, 2008, pp. 147-153.
[17] S. Al-Awfi and M. Babiker, “Atom Dynamics between Conducting Plates,” Physical Review A, Vol. 58, No. 3, 1998, pp. 2274-2281. doi:10.1103/PhysRevA.58.2274
[18] S. Bougouffa and S. Al-Awfi, “The Dynamics of the Jaynes-Cummings Model in Nanostructures,” Physica Scripta, Vol. 2009, No. T135, 2009, p. 014011. doi:10.1088/0031-8949/2009/T135/014011
[19] A.-S. F. Obada, M. M. A. Ahmed, F. K. Faramawy and E. M. Khalil, “Entropy and Entanglement of the Nonlinear Jaynes-Cummings Model,” Chinese Journal of Physics, Vol. 42, No. 1, 2004, pp. 79-86.
[20] M. M. A. Ahmed, E. M. Khalil and A.-S. F. Obada, “Generation of a Nonlinear Stark Shift through the Adiabatic Elimination Method,” Optics Communications, Vol. 254, No. 1-3, 2005, pp. 76-84. doi:10.1016/j.optcom.2005.05.016
[21] A.-S. F. Obada, M. M. A. Ahmed and E. M. Khalil, “Generation of a Nonlinear Two-Mode Stark Shift through the Adiabatic Elimination Method,” Journal of Modern Optics, Vol. 53, No. 8, 2006, pp. 1149-1155. doi:10.1080/09500340600551440
[22] A.-S. F. Obada, M. M. A. Ahmed, F. K. Faramawy and E. M. Khalil, “Influence of Kerr-Like Medium on a Nonlinear Two-Level Atom,” Chaos, Solitons & Fractals, Vol. 28, No. 4, 2006, pp. 983-988. doi:10.1016/j.chaos.2005.08.176

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.