Biodiesel Production Based in Microalgae: A Biorefinery Approach

DOI: 10.4236/ns.2015.77039   PDF   HTML   XML   4,147 Downloads   5,549 Views   Citations


It is of great knowledge nowadays that the use of fossil fuels is responsible for the emission of gases that intensify the greenhouse effect, which threatens the survival of the humankind. The gravity of this fact could be mitigated through the indirect use of solar energy for fuels derived from vegetable that can be planted and cultivated by the world of renewable and non-polisher. Microalgae play an important role in this regard, as they have promising characteristics as potential raw material for the production of biofuels, able to absorb large amounts of CO2. Chlorophyll organisms convert these simple substances in the atmosphere, absorbing sunlight into chemical energy stored, that is, compounds with high energy, biomass can also be used to obtain biocompounds human nutritional supplement and food animal, however, have been found an important number of difficulties to economically viable production like high cost of production of dry biomass and oil extraction. Here, we review the main approaches of biorefinery concept appearing as an alternative to achieve economic viability of the production of bio-diesel based on microalgae. The major points are the following: 1) use of re-residual water, 2) marketing of Carbon Credits, and 3) development of co-products resulting from high value added.

Share and Cite:

González, L. , Díaz, G. , Aranda, D. , Cruz, Y. and Fortes, M. (2015) Biodiesel Production Based in Microalgae: A Biorefinery Approach. Natural Science, 7, 358-369. doi: 10.4236/ns.2015.77039.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] International Energy Agency (2011) Technology Roadmap Biofuels for Transport.
[2] Encarnação, A.P.G. (2008) Geração de Biodiesel pelos Processos de Transesterificação e Hidroesterificação, Uma Avaliação Econômica, MsC. Thesis, Rio de Janeiro, Brazil.
[3] Amaral, M.A.P. and Da Costa, R.C. (2010) Brazilian Biodiesel Market and Future Prospects. Mercado Brasileiro de Biodiesel e Perspectivas Futuras. BNDES Setorial, 31, 253-280. Biocombustíveis.
[4] Chisti, Y. (2007) Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306.
[5] Ree, R.V. and Annevelink, B. (2007) Status Report Biorefinery, Agrotechnology and Food Sciences Group. Wagenongen.
[6] Wang, B., Li, Y., Wu, N. and Lan, C.Q. (2008) CO2 Bio-Mitigation Using Microalgae. Applied Microbiology and Biotechnology, 79, 707.
[7] Brennan, L. and Owende, P. (2010) Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renewable and Sustainable Energy Reviews, In Press, Corrected Proof. 2010.
[8] Reith, J.H. (2004) Sustainable Co-Production of Fine Chemicals and Energy from Microalgae: Public Final E.E.T. Duurzame co-productie van fijnchemicaliën en energie uit micro-algen: Openbaar eindrapport E.E.T. Project K99005/ 398510-1010. Petten, Energieonderzoek Centrum Nederland.
[9] Mata, T.M., Martins, A.A. and Caetano, N.S. (2010) Microalgae for Biodiesel Production and Other Applications: A Review. Renewable and Sustainable Energy Reviews, 14, 217-232.
[10] Arceo, A.A. (2012) Produção de biodiesel mediante o processo de Hidroesterificação do óleo de microalgas. PhD. Thesis, Federal University of Rio de Janeiro, Brazil.
[11] Holanda, L.R. and Ramos, F.S. (2011) Analysis of the Economic Viability of the Generated Energy through the Micro-algae. Electronic Magazine of Management and System. Análise da Viabilidade econêmica da Energia gerada através das microalgas. Revista Eletrônica Sistemas e Gestão, 6, 327-346.
[12] Derner, R.B., et al. (2006) Microalgae, Products and Applications. Microalgas, produtos e aplicações. Scielo: Revista Ciência Rural, 36, 1959-1967.
[13] Simopoulos, A.P. (2002) The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomedecine & Pharmacotherapy, 56, 365-379.
[14] Becker, W. (2004) Microalgae in Human and Animal Nutrition. In: Richmond, A., Ed., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, London, 566 p.
[15] Brown, M.R. (1991) The Amino-Acid and Sugar Composition of 16 Species of Microalgae Used in Mariculture. Jour-nal of Experimental Marine Biology and Ecology, 145, 79-99.
[16] Radwan, S.S. (1991) Sources of C20-Polyunsaturated Fatty Acids for Microbiological Use. Applied Microbiology Biotechnology, 35, 421-430.
[17] Borowitzka, M.A. (1993) Products from Microalgae. Infofish International, 5, 21-26.
[18] Fábregas, J., et al. (1994) Decrease of Plasma Cholesterol with the Marine Microalgae Dunaliella Tertiolecta in Hypercholesterolemic Rats. Journal of General Microbiology, 40, 553-540.
[19] Gill, I. and Valivety, R. (1997) Polyunsaturated Fatty Acids, Part 1: Occurrence, Biological Activities and Applications. Trends in Biotechnology, 15, 401-409.
[20] Yongmanitchai, W. and Ward, O.P. (1991) Screening of Algae for Potential Alternative Sources of Eicosapentaenoic Acid. Phytochemistry, 30, 2963-2967.
[21] Pulz, O. (2004) Photobioreactors: Production Systems for Phototrophic Microorganisms. Applied Microbiology and Biotechnology, 57, 287-293.
[22] Euromonitor International (2012) Fortification of Foods with Omega-3 Shows Strong Growth. Additives and Ingredients. Fortificação de alimentos com Ômega-3 mostra forte crescimento. Aditivos e Ingredientes.
[23] ZEAN Consultores (2013) Thin Film Evaporators. Application: Distillation of Glycerin. Evaporadores de películas finas. Aplicación: Destilación de glicerina.
[24] Pedroni, J.M. (2013) The Molecular Distillation and Its Applications in the Industry of Oils and Fats. El destilador molecular y sus aplicaciones en la industria de aceites y grasas.
[25] Brudy Technology (2013) New Omega-3 Enzyme. Scientific Update. Nuevos ácidos grasos OMEGA-3 Enzimáticos. Actualización Científica.
[26] Chauton, M.S., et al. (2015) Techno-Economic Analysis of Industrial Production of Marine Microalgae as a Source pf EPA and DHA-Rich Raw Material for Aquafeed: Research Challenges and Possibilities. Aquaculture, 436, 95-103.
[27] Abalde, J., Cid, A., Fidalgo, J., Torres, E. and Herrero, C. (1995) Microalgae: Cultivation and Applications. Microalgas: cultivo e aplicaciones. Monography No. 26, Coruña University, A Coruña, 210 p.
[28] Orosa, M., et al. (1997) Production and Analysis of Secondary Carotenoids in Green Algae. Journal of Applied Phycology, 12, 553-556.
[29] Skulberg, O.M. (2004) Bioactive Chemicals in Microalgae. In: Richmond, A., Ed., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, Oxford, 485-512.
[30] Campo, J.A., et al. (2000) Carotenoid Content of Chlorophycean Microalgae: Factors Determining Lutein Accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76, 51-59.
[31] Ben-Amotz, A. (2004) Industrial Production of Microalgal Cell-Mass and Secondary Products—Major Industrial Species: Dunaliella. In: Richmond, A., Ed., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, Oxford, 273-280.
[32] Díaz, G.C., Cruz, Y.R., Fortes, M.M., Viegas, C.V., Carliz, R.G., Furtado, N.C. and Aranda, D.A.G. (2014) Primary Separation of Antioxidants (Unsaponifiables) the Wet Biomass Microalgae Chlamydomonas sp. and Production of the Biodiesel. Natural Science, 6, 1210-1218.
[33] Chamorro, G. (1980) Toxicological Study of Spirulina Algae Pilot Plant Producing Protein (Spirulina Sosa Texcoco SA). Etude toxicologique de l’algue Spirulina plante pilote productrice de protéines (Spirulina de Sosa Texcoco S.A.) UF/MEX/78/048, UNIDO/10.387.
[34] Becker, E.W. (2007) Micro Algae as a Source of Protein. Medical Clinic, Department II, University of Tübingen, Immunopathological Laboratory, Otfried-Müller-Str-10, 72076 Tübingen, Germany.
[35] Wijffels, R., Barbosa, M. and Eppink, M.H.M. (2010) Microalgae for the Production of Bulk Chemicals and Biofuels. Biofuels, Bioproducts and Biorefining, 4, 287-295.
[36] Mulder, J.P. and Oliveira, P.E. (2010) Microalgae: The New Energy. Micro-Algas: A Nova Energia. Mimeo, Recife/ PE: UFPE.
[37] Mulbry, W., Konrad, S., Pizarro, C. and Kebedee-Westhead, E. (2008) Treatment of Dairy Manure Effluent Using Freshwater Algae: Algal Productivity and Recovery of Manure Nutrients Using Pilot-Scale Algal Turf Scrubbers. Bioresource Technology, 99, 8137-8142.
[38] Sawayama, S., Inoue, S., Dote, Y. and Yokoyama, S. (1995) CO2 Fixation and Oil Production through Microalga. Energy Conversion and Management, 36, 729-731.
[39] Cardoso, A. and Vieira, G.G. (2010) Evaluation of the Potential of Residual Microalgae as an Alternative to the Biodiesel Production Chain. Avaliação do potencial das microalgas residuais como uma alternativa à cadeia produtiva do biodiesel. Testing and Development Laboratory on Biomass and Biofuels—LEDBIO, Federal University of Tocantins.
[40] García, L.M., García, A.I. and Morna, A. (2007) Isolation and Selection of Microalgae Species for the CO2 Bio-Fixa-tion. Journal of Biotechnology, 131, 122-126.
[41] Radmann, E.M., Camerini, F.V., Santos, T.D. and Costa, J.A.V. (2011) Isolation and application of SOX and NOX Resistant Microalgae in Biofixation of CO2 from Thermoelectricity Plants. Energy Conversion and Management, 52, 3132-3136.
[42] Morais, M.G., Costa, J.A.V., et al. (2008) Bioprocesses for Removing Carbon Dioxide and Nitrogen Oxide Microalgae Order to Use Gases Generated during the Combustion of Coal. Bioprocessos para remoção de dióxido de carbono e óxido de nitrogênio por microalgas visando a utilização de gases gerados durante a combustão do carvão. Química Nova, 31, 1038-1042.
[43] Harun, R., Singh, M., Forde, G.M., et al. (2009) Bioprocess Engineering of Microalgae to Produce a Variety of Consumer Products. Renew Sustain Energy, 14, 1037-1047.
[44] Borges, L., et al. (2007) Carbon Absorption Potential for Microalgae Species Used in Aquaculture: First Steps towards the Development of a “Clean Development Mechanism”. Potencial de absorção de carbono por espécies de microalgas usadas na aqüicultura: primeiros passos para o desenvolvimento de um “mecanismo de desenvolvimento limpo”. At-lantica, Rio Grande, 29, 35-46.
[45] Olaizola, M., et al. (2004). Microalgal Removal of CO2 from Flue Gases: CO2 Capture from a Coal Combustor. Mera Pharmaceuticals, Inc., Kailua-Kona, Physical Sciences Inc., Andover.
[46] Kadam, K.L. (1997) Power Plant Fuel as a Source of CO2 for Microalgae Cultivation: Economic Impact of Different Process Options. Energy Conversion and Management, 38, S505-S510.
[47] Walke, L., et al. (1998) Recovery of CO2 from Fuel Gas Using in Electrochemical Membrane. Gas Separation and Purification, 2, 72-76.
[48] Ijima, M., et al. (2003) Fuel Gas CO2 Recovery and Compression Cost Study for CO2 Enhanced Oil Recovery. In: Gale, J. and Kaya, Y., Eds., Greenhouse Gas Control Technologies—6th International Conference, Pergamon Press, Oxford, 109-114.
[49] Borges, F.C. (2010) Proposta de um modelo Conceitual de biorrefinaria com estrutura descentralizada. MsC. Thesis, Federal University of Rio Grande do Sul, Porto Alegre.
[50] Wikipedia (2012) Carbon Credits. Créditos de carbono.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.