Adsorption of CO, CO2, NO and NO2 on Boron Nitride Nanotubes: DFT Study


The adsorption of CO, CO2, NO and CO2 gas molecules on different chiralities of single boron nitride nanotubes (BNNTs) is investigated, applying the density functional theory and using basis set 6 - 31 g (d,p). The energetic, electronic properties and surface reactivity have been discussed. We found that the best BNNT for adsorbing the CO, CO2, NO and NO2 gas molecules is (5,0) BNNT with adsorption energy of -0.27, -0.37 eV, -0.23 and -0.92 eV, respectively. Also, the electronic character of (5,0), (9,0), (5,5) and (6,6) BNNTs is found to be not affected by the adsorption of CO, CO2, NO and NO2 gas molecules. It is found that the dipole moments of zig-zag (5,0) and (9,0) BNNTs are always higher than the arm-chair (5,5) and (6,6) BNNTs. Also, it is noticed that the highest dipole moment is for (9,0) BNNT.

Share and Cite:

El-Barbary, A. , Eid, K. , Kamel, M. , Taha, H. and Ismail, G. (2015) Adsorption of CO, CO2, NO and NO2 on Boron Nitride Nanotubes: DFT Study. Journal of Surface Engineered Materials and Advanced Technology, 5, 154-161. doi: 10.4236/jsemat.2015.53017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ma, R.Z., Bando, Y., Zhu, H.W., Sato, T., Xu, C.L. and Wu, D.H. (2002) Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature. Journal of the American Chemical Society, 124, 7672.
[2] Lim, S.H., Luo, J., Ji, W. and Lin, J. (2007) Synthesis of Boron Nitride Nanotubes and Its Hydrogen Uptake. Catalysis Today, 120, 346-350.
[3] Oku, T. and Kuno, M. (2003) Synthesis, Argon/Hydrogen Storage and Magnetic Properties of Boron Nitride Nanotubes and Nanocapsules. Diamond and Related Materials, 12, 840-845.
[4] Postole, G., Caldararu, M., Ionescu, N.I., Bonnetot, B., Auroux, A. and Guimon, C. (2005) Boron Nitride: A High Potential Support for Combustion Catalysis. Thermochimica Acta, 434, 150-157.
[5] Meyer, N., Bekaert, K., Pirson, D., Devillers, M. and Hermans, S. (2012) Boron Nitride as an Alternative Support of Pd Catalysts for the Selective Oxidation of Lactose. Catalysis Communications, 29, 170-174.
[6] Zhi, C., Bando, Y., Tang, C. and Golberg, D. (2010) Boron Nitride Nanotubes. Materials Science and Engineering, 70, 92-111.
[7] Hoa, N.D., Van Quy, N. and Kim, D. (2009) Nanowire Structured SnOx-SWNT Composites: High Performance Sensor for NOx Detection. Sensors and Actuators B, 142, 253-259.
[8] Ghosh, D., Ghosh, B., Hussain, S., Chaudhuri, S., Bhar, R. and Pal, A.K. (2012) Novel BN/Pd Composite Films for Stable Liquid Petroleum Gas Sensor. Applied Surface Science, 263, 788-794.
[9] Ghassemi, H.M., Lee, C.H., Yap, Y.K. and Yassar, R.S. (2010) Real-Time Fracture Detection of Individual Boron Nitride Nanotubes in Severe Cyclic Deformation Processes. Journal of Applied Physics, 108, 0243141-0243144.
[10] Bai, X.D., Golberg, D., Bando, Y., Zhi, C.Y., Tang, C.C., Mitome, M. and Kurashima, K. (2007) Deformation-Driven Electrical Transport of Individual Boron Nitride Nanotubes. Nano Letters, 7, 632-637.
[11] Zhai, T., Li, L., Ma, Y., Liao, M., Wang, X., Fang, X., Yao, J., Bando, Y. and Golbeng, D. (2011) One-Dimensional Inorganic Nanostructures: Synthesis Field-Emission and Photodetection. Chemical Society Reviews, 40, 2986-3004.
[12] Kimura, T., Yamamoto, K., Shimizu, T. and Yugo, S. (1980) Humidity-Sensitive Electrical Properties and Switching Characteristics of BN Films. Thin Solid Films, 70, 351-362.
[13] Sayago, I., Santos, H., Horrillo, M.C., Aleixandre, M., Fernández, M.J., Terrado, E., Tacchini, I., Aroz, R., Maser, W.K., Benito, A.M., Martínez, M.T., Gutiérrez, J. and Munoz, E. (2008) Carbon Nanotube Networks as Gas Sensors for NO2 Detection. Talanta, 77, 758-764.
[14] Li, X.M., Tian, W.Q., Dong, Q., Huang, X.R., Sun, C.C. and Jiang, L. (2011) Substitutional Doping of BN Nanotube by Transition Metal: A Density Functional Theory Simulation. Computational and Theoretical Chemistry, 964, 199- 206.
[15] Chen, H.L., Wu, S.Y., Chen, H.T., Chang, J.G., Ju, S.P., Tsai, C. and Hsu, L.C. (2010) Theoretical Study on Adsorption and Dissociation of NO2 Molecule on Fe(1 1 1) Surface. Langmuir, 26, 7157-7164.
[16] Wickham, D.T., Banse, B.A. and Koel, B.E. (1991) Adsorption of Nitrogen Dioxide and Nitric Oxide on Pd(1 1 1). Surface Science, 243, 83-95.
[17] Jirsak, T., Kuhn, M. and Rodriguez, J.A. (2000) Chemistry of NO2 on Mo(1 1 0): Decomposition Reactions and Formation of MoO2. Surface Science, 457, 254-266.
[18] Huang, W., Jiang, Z., Jiao, J., Tan, D., Zhai, R. and Bao, X. (2002) Decomposition of NO on Pt(1 1 0): Formation of a New Oxygen Adsorption State. Surface Science, 506, 287-292.
[19] Hellman, A., Panas, I. and Grnbeck, H. (2008) NO2 Dissociation on Ag(1 1 1) Revisited by Theory. Journal of Chemical Physics, 128, 104704-104709.
[20] Yen, M.Y. and Ho, J.J. (2010) Density-Functional Study for the NOx (x = 1, 2) Dissociation Mechanism on the Cu(1 1 1) Surface. Chemical Physics, 373, 300-306.
[21] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Lamham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S. and Pople, J.A., Gaussian 2004 (Inc., Wallingford CT).
[22] EL-Barbary, A.A., Lebda, H.I. and Kamel, M.A. (2009) The High Conductivity of Defect Fullerene C40 Cage. Computational Materials Science, 46, 128-132.
[23] El-Barbary, A.A., Eid, Kh.M., Kamel, M.A. and Hassan, M.M. (2013) Band Gap Engineering in Short Heteronanotube Segments via Monovacancy Defects. Computational Materials Science, 69, 87-94.
[24] EL-Barbary, A.A., Ismail, G.H. and Babeer, A.M. (2013) Effect of Monovacancy Defects on Adsorbing of CO, CO2, NO and NO2 on Carbon Nanotubes: First Principle Calculations. Journal of Surface Engineered Materials and Advanced Technology, 3, 287-294.
[25] Hindi, A. and EL-Barbary, A.A. (2015) Hydrogen Binding Energy of Halogenated C40 Cage: An Intermediate between Physisorption and Chemisorption. Journal of Molecular Structure, 1080, 169-175.
[26] EL-Barbary, A.A. (2015) 1H and 13C NMR Chemical Shift Investigations of Hydrogenated Small Fullerene Cages Cn, CnH, CnHn and CnHn+1: n = 20, 40, 58, 60. Journal of Molecular Structure, 1097, 76-86.
[27] EL-Barbary, A.A., Eid, Kh.M., Kamel, M.A., Osman, H.M. and Ismail, G.H. (2014) Effect of Tubular Chiralities and Diameters of Single Carbon Nanotubes on Gas Sensing Behavior: A DFT Analysis. Journal of Surface Engineered Materials and Advanced Technology, 4, 66-74.
[28] Chang, H., Lee, J.D., Lee, S.M. and Lee, Y.H. (2001) Adsorption of NH3 and NO2 Molecules on Carbon Nanotubes. Applied Physics Letters, 79, 3863.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.