Hydrological Model to Simulate Daily Flow in a Basin with the Help of a GIS

Abstract Full-Text HTML XML Download Download as PDF (Size:3440KB) PP. 58-67
DOI: 10.4236/ojmh.2015.53006    4,124 Downloads   5,137 Views   Citations

ABSTRACT

Hydrological modeling is an essential tool to evaluate water resources in hydrological basins. The time invested in it depends on the structure of the hydrological model chosen, the amount and quality of information required and the efforts invested in calibration. CEQUEAU is a distributed hydrological model developed at the INRS-ETE, Quebec, Canada. The basin is divided into cells and the rainfall-runoff process is simulated cell by cell until the outlet. Recent advances in geomatics make it possible to develop modules integrated in geographic information systems (GIS) to facilitate the processing of information required by hydrological models. The objective of the present investigation is to implement the CEQUEAU model in Idrisi GIS for the hydrological modeling of basins, thereby reducing information processing time and improving limitations in the original version, such as the number of discretization cells and methods to calculate evapotranspiration. This document presents the results from the implementation of the CEQUEAU model, including evapotranspiration, water levels (in reservoirs, soil and aquifers) and hydrographs. These results show that these new changes provide more hydrology options to the user and with better results.

Cite this paper

Mercado, V. , Bâ, K. , Quentin, E. , Madrid, F. and Gama, L. (2015) Hydrological Model to Simulate Daily Flow in a Basin with the Help of a GIS. Open Journal of Modern Hydrology, 5, 58-67. doi: 10.4236/ojmh.2015.53006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ba, K.M., Díaz-Delgado, C. and Rodríguez-Osorio, V. (2001) Simulación de caudales de los ríos Amacuzac y San Jerónimo en el Estado de Mexico, Mexico. Ingeniería Hidráulicaen México (IHM), 16, 117-126.
[2] Venneker, R.G. and Bruijinzeel, L.A. (1997) The IHE-VUA Cathment Research and Modelling lnifiafive (CRMI). The IHE-VUA Catchment Research and Modelling Initiative CRMI-RN-001. IIHHEE, Delfl, Vrije Universiteit Amsterdam, The Netherlands.
[3] Olivera, F., Reed, S. and Maidment, D.R. (1998) HEC-PrePro v. 2.0: An ArcView Pre-Processor for HEC’s Hydrologic Modeling System. 1998 ESRI User’s Conference, 25-31 July 1998, San Diego.
[4] Olivera, F. and Maidment, D.R. (1999) GIS Tools for HMS Modeling Support. 1999 ESRI User’s Conference, Sandiego.
[5] Molnar, D.K. and Julien, P.Y. (2000) Grid-Size Effects on Surface Runoff Modeling. Journal of Hydrologic Engineering, 5, 8-16. http://dx.doi.org/10.1061/(ASCE)1084-0699(2000)5:1(8)
[6] Fortin, J.P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J. and Villeneuve, J.P. (2001) A Distributed Watershed Model Compatible with Remote Sensing and GIS Data. I: Description of Model. Journal of Hydrologic Engineering, 6, 91-99. http://dx.doi.org/10.1061/(ASCE)1084-0699(2001)6:2(91)
[7] Fortin, J.P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J. and Villeneuve, J.P. (2001) A Distributed Watershed Model Compatible with Remote Sensing and GIS Data II: Application to Chaudiere Watershed. Journal of Hydrologic Engineering, 6, 100-108.
http://dx.doi.org/10.1061/(ASCE)1084-0699(2001)6:2(100)
[8] Chávez, M.I. and Estrada, B. (2005) Programación de una interfaz entre el modelo hidrológico CEQUEAU y el SIG ArcView. Bacherlors Thesis, Universidad Autónoma del Estado de México, Facultad de Ingeniería, Toluca.
[9] He, C. and Croley II, T.E. (2007) Application of a Distributed Large Basin Runoff Model in the Great Lakes Basin. Control Engineering Practice, 15, 1001-1011.
http://dx.doi.org/10.1016/j.conengprac.2007.01.011
[10] Morin, G. and Paquet, P. (2007) Modèle Hydrologique CEQUEAU. Rapport de Recherche no R000926, INRS-ETE.
[11] Ayadi, M. and Bargaoui, Z. (1998) Modélisation des écoulements de l’oued Miliane par le modèle CEQUeau. Journal des Sciences Hydrologiques, 43, 741-758.
http://dx.doi.org/10.1080/02626669809492170
[12] Eleuch, S., Carsteanu, A.A., Ba, K., Magagi, R., Goita, K. and Díaz-Delgado, C. (2010) Validation and Use of Rainfall Radar Data to Simulate Water Flows in the Río Escondido Basin. Stochastic Environmental Research & Risk Assessment, 24, 559-565.http://dx.doi.org/10.1007/s00477-009-0336-9
[13] Quentin, E., Díaz-Delgado, C., Gómez-Albores, M.A., Manzano-Solís, L.R. and Franco-Plata, R. (2007) Desarrollo geomático para la gestión integrada del agua. XI Conferencia Iberoamericana de Sistemas de Información Geográfica (XI CONFIBSIG), 21pp.
[14] Campos-Aranda, D.F. (2005) Estimación empírica de la ETP en la República Mexicana. Ingeniería Hidráulica en México (IHM), 20, 99-110.
[15] Allen, R., Pereira, L., Dirk, R. and Smith, M. (2006) Evapotranspiración del cultivo. Guía para la determinación de los requerimientos de agua para los cultivos. FAO. Roma.
ftp://ftp.fao.org/agl/aglw/docs/idp56s.pdf

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.