The Physical Metric and Compact Objects


In the previous work, the author introduces the physical metric for spherically symmetric and static metric which satisfies all the experimental tests of general relativity. This metric changes the nature of gravity for compact objects, such as black holes and neutron stars. It introduces the extended horizon which is 2.60 times of the Schwarzschild radius and plays a determinant role in the size of compact objects. This provides the prediction that the gravitational red shift z on the surface of compact objects is universal value of . None of the observed neutron stars rotate fast enough to change this prediction significantly. The gravity inside the extended horizon is repulsive. The effect of this repulsive force causes supernova explosion, high energy cosmic ray generation from AGN and explains the acceleration of the universe expansion.

Share and Cite:

Tomozawa, Y. (2015) The Physical Metric and Compact Objects. Journal of Modern Physics, 6, 972-981. doi: 10.4236/jmp.2015.67101.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Shapiro, I.I., Ash, M.E. and Tausner, M.J. (1966) Physical Review Letters, 17, 933. Resenberg, R.D. and Shapiro, I.I. (1979) Astrophysical Journal, 234, L219-L221.
[2] Bertotti, B., Iess, L. and Tortora, P. (2003) Nature, 425, 374-376.
[3] Tomoawa, Y. (2015) Journal of Modern Physics, 6, 335-345.
[4] Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. Freeman, San Francisco. Weinberg, S. (1972) Gravitation and Cosmology. Wiley and Sons, New York.
[5] Steiner, A.W., Lattimer, J.M. and Brown, E.F. (2010) The Astrophysical Journal, 722, 33.
[6] Villarreal, A.R. and Strohmayer, T.E. (2004) The Astrophysical Journal, 614, L121.
[7] Galloway, D.K., et al. (2010) The Astrophysical Journal, 711, L148-L151.
[8] Dubey, A.K. and Sen, A.K. (2014) Journal of Physics, Conference Series, 481, Article ID: 012010.
[9] Hessels, J.W.T., Ransom, S.M., Stairs, I.H., Freire, P.C.C., Kaspi, V.M. and Camilo, F. (2006) Science, 311, 1901- 1904.
[10] Gottam, J., Paerels, F. and Mendez, M. (2002) Nature, 420, 51-54.
[11] Rogers, A.E.E., Barvainis, R., Charpentier, P.J. and Corey, B.E. (1993) IEEE Transactions on Antennas and Propagation, 41, 77-84.
[12] The Pierre Auger Collaboration, Abraham, J., Abreu, P., Aglietta, M., Aguirre, C., Allard, D., Allekotte, I., et al. (2007) Science, 318, 938-943.
[13] Tomozawa, Y. (2013) Journal of Modern Physics, 4, 385-389.
[14] Tomozawa, Y. (1985) Magnetic Monopoles, Cosmic Rays and Quantum Gravity. Proceedings of the INS International Symposium on Composite Models of Quarks and Leptons, Tokyo, 13-15 August 1985, 386. Rays, C. (1986) Quantum Effects of Gravity and Gravitational Collapse. Proceedings of the Second Workshop on Funda- mental Physics, Humacao, 24-28 March 1986. This Lecture Note Can Be Retrieved by KEK Kiss No. 200035789.
[15] Giudice, G.F., Luty, M.A., Murayama, H. and Ratazzi, H.R. (1998) Journal of High Energy Physics, 12, 27.
[16] Randall, L. and Suundrum, R. (1999) Nuclear Physics B, 557, 79-118.
[17] Aharonian, F., Akhperjanian, A.G., de Almeida, U.B., Bazer-Bachi, A.R., Behera, B., Beilicke, M., et al. (2008) Astronomy and Astrophysics, 477, 353-363.
[18] Tomozawa, Y. (2010) Evidence for a Dark Matter Particle. arXiv:1002.1938

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.