Share This Article:

Fractures and Biomechanical Characteristics of the Bone

Abstract Full-Text HTML XML Download Download as PDF (Size:269KB) PP. 255-263
DOI: 10.4236/ss.2015.66039    2,033 Downloads   2,917 Views   Citations


The biological tissue is affected by external and internal deformation forces: tractive/tensile forces, shearing and compressive forces. The bone is deformed under the effect of a force. If the load exceeds the bone solidity limitation, fracture occurs. A mature bone consists of compact and spongy bone tissue. The basic structural unit of the cortical bone tissue is osteons and spongiosa consists of a network of bone trabeculae. The organic and mineral parts of the bone are responsible for the special bone characteristics. The effect of a physical activity on the mechanical characteristics of the bone is associated with the intensity of the load. Fractures are more common in elderly people as the bone structure is altered on account of osteoporosis and contains less bone tissue. Biomechanical characteristics with anatomic and histological bone structure as well as osteoporotic hip fractures are described in the paper.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Velnar, T. , Bunc, G. and Gradisnik, L. (2015) Fractures and Biomechanical Characteristics of the Bone. Surgical Science, 6, 255-263. doi: 10.4236/ss.2015.66039.


[1] Turner, C.H. (2002) Biomechanics of Bone: Determinants of Skeletal Fragility and Bone Quality. Osteoporosis International, 13, 97-104.
[2] Winter, W. (2008) Bone Strength in Pure Bending: Bearing of Geometric and Material Properties. Studies in Health Technology and Informatics, 133, 230-237.
[3] Bouxsein, M.L. (2005) Determinants of Skeletal Fragility. Best Practice & Research Clinical Rheumatology, 19, 897-911.
[4] Bouxsein, M.L. and Karasik, D. (2006) Bone Geometry and Skeletal Fragility. Current Osteoporosis Reports, 4, 49-56.
[5] Ulstrup, A.K. (2008) Biomechanical Concepts of Fracture Healing in Weight-Bearing Long Bones. Acta Orthopaedica Belgica, 74, 291-302.
[6] Butterwick, D., Papp, S., Gofton, W., Liew, A. and Beaulé, P.E. (2015) Acetabular Fractures in the Elderly, Evaluation and Management. Journal of Bone and Joint Surgery, 97, 758-768.
[7] Ascenzi, M.G., Gill, J. and Lomovtsev, A. (2008) Orientation of Collagen at the Osteocyte Lacunae in Human Secondary Osteons. Journal of Biomechanics, 41, 3426-3435.
[8] Augat, P. and Schorlemmer, S. (2006) The Role of Cortical Bone and Its Microstructure in Bone Strength. Age Ageing, 35, 27-31.
[9] Pidaparti, R.M. and Burr, D.B. (1992) Collagen Fiber Orientation and Geometry Effects on the Mechanical Properties of Secondary Osteons. Journal of Biomechanics, 25, 869-880.
[10] van Oers, R.F., Ruimerman, R., van Rietbergen, B., Hilbers, P.A. and Huiskes, R. (2008) Relating Osteon Diameter to Strain. Bone, 43, 476-482.
[11] Szulc, P. (2006) Bone Density, Geometry, and Fracture in Elderly Men. Current Osteoporosis Reports, 4, 57-63.
[12] Buller, L.T., Lawrie, C.M. and Vilella, F.E. (2015) A Growing Problem: Acetabular Fractures in the Elderly and the Combined Hip Procedure. Orthopedic Clinics of North America, 46, 215-225.
[13] Silva, M.J. (2007) Biomechanics of Osteoporotic Fractures. Injury, 38, 69-76.
[14] Komadina, R. (2008) Hip, Osteoporosis: New Paradigm. European Journal of Trauma and Emergency Surgery, 2, 163-170.
[15] Szulc, P., Munoz, F., Duboeuf, F., Merchant, F. and Delmas, P.D. (2006) Low Width of Tubular Bones Is Associated with Increased Risk of Fragility Fracture in Elderly Men-the MINOS Study. Bone, 38, 595-602.
[16] Cowin, S.C. and Mehrabadi, M.M. (1989) Identification of the Elastic Symmetry of Bone and Other Materials. Journal of Biomechanics, 22, 503-515.
[17] Buckwalter, J.A. and Cooper, R.R. (1987) Bone Structure and Function. Instructional Course Lectures, 36, 27-48.
[18] Boskey, A.L. and Posner, A.S. (1984) Bone Structure, Composition, and Mineralization. Orthopedic Clinics of North America, 15, 597-612.
[19] Schoutens, A., Laurent, E. and Poortmans, J.R. (1989) Effects of Inactivity and Exercise on Bone. Sports Medicine, 7, 71-81.
[20] Benjamin, M. and Ralphs, J.R. (2001) Entheses—The Bony Attachments of Tendons and Ligaments. Italian Journal of Anatomy and Embryology, 106, 151-157.
[21] Augat, P., Simon, U., Liedert, A. and Claes, L. (2005) Mechanics and Mechano-Biology of Fracture Healing in Normal and Osteoporotic Bone. Osteoporosis International, 16, 36-43.
[22] Giannoudis, P., Tzioupis, C., Almalki, T. and Buckley, R. (2007) Fracture Healing in Osteoporotic Fractures: Is It Really Different? A Basic Science Perspective. Injury, 38, 90-99.
[23] Oryan, A., Monazzah, S. and Bigham-Sadegh, A. (2015) Bone Injury and Fracture Healing Biology. Biomedical and Environmental Sciences, 28, 57-71.
[24] Einhorn, T.A. (1998) The Cell and Molecular Biology of Fracture Healing. Clinical Orthopaedics and Related Research, 355, 7-21.
[25] Tinubu, J. and Scalea, T.M. (2015) Management of Fractures in a Geriatric Surgical Patient. Surgical Clinics of North America, 95, 115-128.
[26] Burkhardt, M., Culemann, U., Seekamp, A. and Pohlemann, T. (2008) Strategies for Surgical Treatment of Multiple Trauma Including Pelvic Fracture. Review of the Literature. Der Unfallchirurg, 108, 812-820.
[27] Donahue, S.W. and Galley, S.A. (2006) Microdamage in Bone: Implications for Fracture, Repair, Remodeling, and Adaptation. Critical Reviews in Biomedical Engineering, 34, 215-271.
[28] Schatzker, J. (1996) Subcapital and Intertrochanteric Fractures. In: Schatzker, J. and Tile, M., Eds., The Rationale of Operative Fracture Care, Springer, Berlin-Heidelberg, 340-348.
[29] Alonso, J.E., Lee, J. and Burger, A.R. (1986) The Management of Complex Orthopedic Injuries. In: Asensio, J.A., Demetriades, D. and Berne, T., Eds., The Surgical Clinics of North America, Saunders, 76, 879-903.
[30] Duquet, N. (2014) Osteoporosis: Risk Factors and Prevention. Journal de pharmacie de Belgique, 2, 4-12.
[31] Rincon-Kohli, L. and Zysset, P.K. (2008) Multy-Axial Mechanical Properties of Human Trabecular Bone. Biomechanics and Modeling in Mechanobiology, 8, 195-208.
[32] Sinaki, M. (1998) Musculoskeletal Challenges of Osteoporosis. Aging, 10, 249-262.
[33] Benhamou, C.L. (2007) Effects of Osteoporosis Medications on Bone Quality. Joint Bone Spine, 74, 39-47.
[34] Kyle, R.F. (1991) Intertrochanteric Fractures. In: Steinberg, M.E., Ed., The Hip and Its Disorders, Saunders, Philadelphia, 280-290.
[35] Bonnaire, F., Straβberger, C., Kieb, M. and Bula, P. (2012) Osteoporotic Fractures of the Proximal Femur. What's New? Der Chirurg, 83, 882-891.
[36] Ackroyd, C.E. (1979) Pertrochanteric Fractures of the Femur. In: Bentley, G., Ed., Operative Surgery, Orthopaedics, Part 1, Butterworth & Company, Boston, 120-125.
[37] Legroux, G.I., Demondion, X., Louville, A.B., Delcambre, B. and Cortet, B. (2004) Subchondral Fractures of the Femoral Head: A Review of Seven Cases. Joint Bone Spine, 71, 131-135.
[38] Regazzoni, P., Rueedi, T.H., Winquist, R. and Allgoewer, M. (1985) The Dinamic Hip Screw Implant System. Springer Verlag, Berlin.
[39] Hampton, O.P. and Fitts, W.T. (1957) Fratctures and Dislocations of the Lower Extremity. In: Allen, J.G., Harkins, H.N., Moger, C.A., Rhoads, J.E. and Lippincot, J.B., Eds., Surgery, Principles and Practice, Lippincot Company, Philadelphia, 327-328.
[40] Kristiansen, T.K. and Hansen, S.T. (1987) Fractures. In: Davies, J.H., Ed., Clinical Surgery, Mosby, St. Louis, 2995-3001.
[41] Cascone, R., Lieberman, B. and Deitz, S. (1996) Courtroom Medicine. In: Kalisch, J.R. and Williams, H., Eds., Hip and Thigh, Matthew Bender.
[42] Reimer, B.L., Foglesong, M.E. and Miranda, M.A. (1994) Femoral Plating. Orthopedic Clinics of North America, 25, 625-633.
[43] Kregor, P.J., Obremskey, W.T., Kreder, H.J. and Swiontkowski, M.F. (2014) Unstable Pertrochanteric Femoral Fractures. Journal of Orthopaedic Trauma, 28, 25-28.
[44] Mueller, M.E., Allgoewer, M., Schneider, R. and Wilengger, H. (1992) Manual of Internal Fixation. 519-534.
[45] Mueller, M.E. and Nazarian, S. (1981) Classification et documentation AO des fractures du fémur. Revue de Chirurgie Orthopedique, 67, 297-309.
[46] Roberts, J.M. (1991) Extracapsular Fractures. In: Steinberg, M.E., Ed., The Hip and Its Disorders, Saunders, Philadelphia, 160-165.
[47] Bannister, G.C., Ackroyd, C.E. and Langkamer, V.G. (1991) Trochanteric Fractures of the Femur. In: Bentley, G. and Greer, R.B., Eds., Rob & Smith’s Operative Surgery, Orthopaedics, Part 1, Butterworth-Heinemann, London, 209-215.
[48] Sauer, H.D., Schottle, H. and Jungbluth, K.H. (1977) Dynamic Force Resistance of Different Osteosynthetic Rocedures in Pertrochanteric Femoral Fractures. Archiv für orthopadische und Unfall-Chirurgie, mit besonderer Berücksichtigung der Frakturenlehre und der orthopadisch-chirurgischen Technik, 89, 275-282.
[49] Baumgaertner, M.R., Curtin, S.L. and Lindskog, D.M. (1998) Intramedullary versus Extramedullary Fixation for the Treatment of Intertrochanteric Hip Fractures. Clinical Orthopaedics, 348, 87-94.
[50] Fagagnolo, F., Kfuri, M. and Paccola, C.A. (2004) Intramedullary Fixation of Pertrochanteric Hip Fractures with the Short AO-ASIF Proximal Femoral Nail. Archives of Orthopaedic and Trauma Surgery, 124, 31-37.
[51] Geissler, N., Meffert, O., Stapel, A. and Heymann, H. (1994) Results of Surgical Management of Unstable Pertrochanteric Femoral Fractures with the Dynamic Hip Screw and T-Plate. Unfallchirurgie, 20, 184.
[52] McLaren, C.A.N., Buckley, J.R. and Rowley, D.I. (1991) Intertrochanteric Fractures of the Femur: A Randomized Prospective Trial Comparing the Pugh Nail with the Dynamic Hip Screw. Injury, 22, 193-195.
[53] Brandt, S.E., Lefever, S., Janzing, H.M., Broos, P.L., Pilot, P. and Houben, B.J. (2002) Percutaneous Compression Plating (PCCP) versus the Dynamic Hip Screw for Pertrochanteric Hip Fractures: Preliminary Results. Injury, 33, 413-418.
[54] Janzig, H.M., Houben, B.J., Brandt, S.E., Chhoeurn, V., Lefever, S., Broos, P., et al. (2002) The Gottfried Percutaneous Compression Plate versus the Dynamic Hip Screw in the Treatment of Pertrochanteric Hip Fractures: Minimal Invasive Treatment Reduces Operative Time and Postoperative Pain. Journal of Trauma, 52, 293-298.
[55] Kosygan, K.P., Mohan, R. and Newman, R.J. (2002) The Gottfried Percutaneous Compression Plate Compared with the Conventional Classic Hip Screw for the Fixation of Intertrochanteric Fractures of the Hip. Journal of Bone and Joint Surgery, 84, 19-20.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.