Aquatic Macrophytes Detritus Quality and Sulfate Availability Shape the Methane Production Pattern in a Dystrophic Coastal Lagoon


Aquatic macrophytes usually show high productivity rate, especially in shallow environments, and may constitute the main source of organic matter to these ecosystems. The coastal lagoons are shallow environments that typically present a broad colonization by aquatic macrophytes. The organic matter derived from aquatic macrophytes consists of detritus and root exudates, from live plants. Methanogens are microorganisms that use labile organic matter (e.g. acetate) in the metabolism, releasing methane (CH4) as an end product. Assessing the influence of aquatic macrophytes on methanogenesis is fundamental to understanding the carbon cycle in shallow environments, such as coastal lagoons. A peculiarity of coastal lagoons that may also influence the methanogenesis is its proximity to the sea, providing the entrance of sulfate in the environment. The methanogenesis can be inhibited by the sulfate reduction when there is sulfate availability sulfate. In this context, we aimed to analyze the methane production in an aquatic macrophyte stand and in the limnetic region of a coastal lagoon, assessing the influence of quantity and quality of organic carbon and sulfate availability on methane production in the sediment profile. We observe that the presence of aquatic macrophytes benefits the methanogenesis, not only by detritus accumulation, but particularly by the release of root exudates from the living plants. The variation in quantity and quality of organic carbon is the main factor that controls the range and shape of the methane production curves. The availability of sulfate presents probably a secondary role, being important when the organic matter is not sufficient for the occurrence of methanogenesis and sulfate reduction simultaneously.

Share and Cite:

Santos Fonseca, A. , Cardoso Marinho, C. and Assis Esteves, F. (2015) Aquatic Macrophytes Detritus Quality and Sulfate Availability Shape the Methane Production Pattern in a Dystrophic Coastal Lagoon. American Journal of Plant Sciences, 6, 1675-1684. doi: 10.4236/ajps.2015.610167.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bédard, C. and Knowles, R. (1991) Hypolimnetic O2 Consumtion, Denitrification, and Methanogenesis in a Thermally Stratified Lake. Canadian Journal of Fisheries and Aquatic Sciences, 48, 1048-1054.
[2] Kuivila, K.M., Murray, J.W., Devol, A.H., Lidstrom, M.E. and Reimers, C.E. (1988) Methane Cycling in the Sediments of Lake Washington. Limnology and Oceanography, 33, 571-581.
[3] Conrad, R. (2007) Microbial Ecology of Methanogens and Methanotrophs. Advances in Agronomy, 96, 1-63.
[4] McInerney, M.J., Sieber, J.R. and Gunsalus, R.P. (2009) Syntrophy in Anaerobic Global Carbon Cycles. Current Opinion in Biotechnology, 20, 623-632.
[5] Capone, D.G. and Kiene, R.P. (1988) Comparison of Microbial Dynamics in Marine and Freshwater Sediments— Contrasts in Anaerobic Carbon Catabolism. Limnology and Oceanography, 33, 725-749.
[6] Bridgham, S.D., Cadillo-Quiroz, H., Keller, J.K. and Zhuang, Q. (2013) Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales. Global Change Biology, 19, 1325-1346.
[7] Zak, D., Reuter, H., Augustin, J., Shatwell, T., Barth, M., Gelbrecht, J. and McInnes, R.J. (2015) Changes of the CO2 and CH4 Production Potential of Rewetted Fens in the Perspective of Temporal Vegetation Shifts. Biogeosciences Discussions, 12, 2455-2468.
[8] Petruzzella, A., Marinho, C.C., Sanches, L.F., Minello, M. and Esteves, F.A. (2013) Magnitude and Variability of Methane Production and Concentration in Tropical Coastal Lagoons Sediments. Acta Limnologica Brasiliensia, 25, 341-351.
[9] Fonseca, A.L.S., Minello, M., Marinho, C.C. and Esteves, F.A. (2004) Methane Concentration in Water Column and in Pore Water of a Coastal Lagoon (Cabiúnas Lagoon, Macaé, RJ, Brazil). Brazilian Archives of Biology and Technology, 47, 301-308.
[10] Esteves, F.A. (2011) Fundamentos de Limnologia. 3rd Edition, Interciência, Rio de Janeiro.
[11] Lyimo, T.J., Pol, A. and Den-Camp, H.J.M.O. (2002) Sulfate Reduction and Methanogenesis in Sediments of Mtoni Mangrove Forest, Tanzania. AMBIO, 31, 614-616.
[12] Ward, D.M. and Winfrey, M.R. (1985) Interactions between Methanogenic and Sulfate-Reducing Bacteria in Sediments. In: Jannasch, H.W. and Williams, P.J.L., Eds., Advances in Microbial Ecology, Plenum Press, New York, 219-286.
[13] Bousquet, P., Ciais, P., Miller, J.B., Dlugokencky, E.J. Hauglustaine, D.A., Prigent, C., Van der Werf, G.R., Peylin, P., Brunke, E.-G., Carouge, C., Langenfelds, R.L., Lathière, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L.P., Tyler, S.C. and White, J. (2006) Contribution of Anthropogenic and Natural Sources to Atmospheric Methane Variability. Nature, 443, 439-443.
[14] Bastviken, D., Santoro, A.L., Marotta, H., Pinho, Q.L., Calheiros, D.F., Crill, P. and Enrich-Prast, A. (2010) Methane Emissions from Pantanal, South America, during the Low Water Season: Toward More Comprehensive Sampling. Environmental Science & Technology, 44, 5450-5455.
[15] Marinho, C.C., Palma-Silva, C., Albertoni, E.F., Giacomini, I.B., Barros, M.P.F., Furlanetto, L.M. and Esteves, F.A. (2015) Emergent Macrophytes Alter the Sedimentcomposition in a Small, Shallow Subtropical Lake: Implications for Methane Emission. American Journal of Plant Science, 6, 315-322.
[16] Peixoto, R.B., Machado-Silva, F., Marotta, H., Enrich-Prast, A. and Bastviken, D. (2015) Spatial versus Day-to-Day Within-Lake Variability in Tropical Floodplain Lake CH4 Emissions—Developing Optimized Approaches to Representative Flux Measurements. PLoS ONE, 10, e0123319.
[17] Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. and Van Dorland, R. (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 129-234.
[18] FIDERJ (1977) Estudos para o planejamento municipal. Rio de Janeiro, Macaé.
[19] Panosso, R.F., Attayde, J.L. and Muehe, D. (1998) Morfometria das lagoas Imboassica, Cabiúnas, Comprida e Carapebus: Implicações para seu funcionamento e manejo. In: Esteves, F.A., Ed., Ecologia das Lagoas Costeiras do Parque Nacional da Restinga de Jurubatiba e do Município de Macaé (RJ), NUPEM/UFRJ, Rio de Janeiro, 91-105.
[20] Ambühl, H. and Bührer, H. (1975) Zur Technik der Entnahme ungestörter Groβproben von Seesedimenten: Ein verbessertes Bohrlot. Schweizerische Zeitschrift für Hydrologie, 37, 175-186.
[21] Casper, P. (1992) Methane Production in Lakes of Different Trophic State. Archiv für Hydrobiologie Beiheft Ergebnisse Limnologie, 37, 149-154.
[22] Golterman, H.L., Clymo, R.S. and Ohnstad, M.A.M. (1978) Methods of Physical and Chemical Analysis of Freshwaters. Blackwell, Oxford.
[23] American Public Health Association-APHA (1998) Standard Methods for the Examination of Water and Wastewater. 20th Edition, APHA, Washington DC.
[24] Estop-Aragonés, C., Knorr, K.-H. and Blodau, C. (2013) Belowground in Situ Redox Dynamics and Methanogenesis Recovery in a Degraded Fen during Dry-Wet Cycles and Flooding. Biogeosciences, 10, 421-436.
[25] Segers, R. (1998) Methane Production and Methane Consumption: A Review of Processes Underlying Wetland Methane Fluxes. Biogeochemistry, 41, 23-51.
[26] Whalen, S.C. (2005) Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere. Environmental Engineering Science, 22, 73-94.
[27] Laanbroek, H.J. (2013) Methane Emission from Natural Wetlands: Interplay between Emergent Macrophytes and Soil Microbial Processes. A Mini-Review. Annals of Botany, 105, 141-153.
[28] Zink, K.-G., Furtado, A.L.S., Casper, P. and Schwark, L. (2004) Organic Matter Composition in the Sediment of Three Brazilian Coastal Lagoons District of Macaé, Rio de Janeiro (Brazil). Anais da Academia Brasileira de Ciências, 76, 29-47.
[29] Marinho, C.C., Meirelles-Pereira, F., Gripp, A.R., Guimaraes, C.C., Esteves, F.A. and Bozelli, R.L. (2010) Aquatic Macrophytes Drive Sediment Stoichiometry and the Suspended Particulate Organic Carbon Composition of a Tropical Coastal Lagoon. Acta Limnologica Brasiliensia, 22, 208-217.
[30] Alves-de-Souza, C., Menezes, M. and Huszar, V. (2006) Phytoplankton Composition and Functional Groups in a Tropical Humic Coastal Lagoon, Brazil. Acta Botanica Brasilica, 20, 701-708.
[31] Farjalla, V.F., Marinho, C.C. and Esteves, F.A. (1999) Uptake of Oxygen in the Initial Stages of Decomposition of Aquatic Macrophytes and Detritus from Terrestrial Vegetation in a Tropical Coastal Lagoon. Acta Limnologica Brasiliensia, 11, 185-193.
[32] Whiticar, M.J., Faber, E. and Schoell, M. (1986) Biogenic Methane Formation in Marine and Freshwater Environments: CO2 Reduction vs. Acetate Fermentation—Isotope Evidence. Geochimica et Cosmochimica Acta, 50, 693-709.
[33] Conrad, R. and Klose, M. (1999) Anaerobic Conversion of Carbon Dioxide to Methane, Acetate and Propionate on Washed Rice Roots. FEMS Microbiology Ecology, 30, 147-155.
[34] Ström, L., Ekberg, A., Mastepanov, M. and Christensen, T.O. (2003) The Effect of Vascular Plants on Carbon Turnover and Methane Emissions from a Tundra Wetland. Global Change Biology, 9, 1185-1192.
[35] Bianchini Jr., I. and Cunha-Santino, M.B. (2008) As rotas de liberação do carbono dos detritos de macrófitas aquáticas. Oecologia Brasiliensis, 12, 20-29.
[36] Lovley, D.R., Dwyer, D.F. and Klug, M.J. (1982) Kinetic Analysis of Competition between Sulfate Reducers and Methanogens in Sediments. Applied and Environmental Microbiology, 43, 1373-1379.
[37] Lovley, D.R. and Klug, M.J. (1983) Sulfate Reducers Can Outcompete Methanogens at Freshwater Sulfate Concentrations. Applied and Environmental Microbiology, 45, 187-192.
[38] Furtado, A.L.S., Casper, P. and Esteves, F.A. (2002) Methanogenesis in an Impacted and Two Dystrophic Coastal Lagoons (Macaé, Brazil). Brazilian Archives of Biology and Technology, 45, 195-202.
[39] Benstead, J. and Lloyd, D. (1996) Spatial and Temporal Variations of Dissolved Gases (CH4, CO2, and O2) in Peat Cores. Microbial Ecology, 31, 57-66.
[40] van der Nat, F.-J. and Middelburg, J.J. (2000) Methane Emission from Tidal Freshwater Marshes. Biogeochemistry, 49, 103-121.
[41] Frenzel, P., Thebrath, B. and Conrad, R. (1990) Oxidation of Methane in the Oxic Surface Layer of a Deep Lake Sediment (Lake Constance). FEMS Microbiology Letters, 73, 149-158.
[42] King, G.M., Roslev, P. and Skovgaard, H. (1990) Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades. Applied and Environmental Microbiology, 56, 2902-2911.
[43] Nielsen, L.P., Enrich-Prast, A. and Esteves, F.A. (2004) Pathways of Organic Matter Mineralization and Nitrogen Regeneration in the Sediment of Five Tropical Lakes. Acta Limnologica Brasiliensia, 16, 193-202.
[44] Bartlett, K.B. and Harriss, R.C. (1993) Review and Assessment of Methane Emissions from Wetlands. Chemosphere, 26, 261-320.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.