Share This Article:

Determination of inter- and intra-subtype/species varia-tions in polymerase acidic protein from influenza A virus using amino-acid pair predictability

Abstract Full-Text HTML Download Download as PDF (Size:228KB) PP. 273-279
DOI: 10.4236/jbise.2009.24041    4,517 Downloads   7,923 Views   Citations

ABSTRACT

The polymerase acidic protein is an important family of proteins from influenza A virus, which is classified as many different subtypes or spe-cies. Thus, an important question is if these classifications are numerically distinguishable with respect to the polymerase acidic protein. The amino-acid pair predictability was used to transfer 2432 polymerase acidic proteins into 2432 scalar data. The one-way ANOVA found these polymerase acidic proteins distinguish-able in terms of subtypes and species. However, the large residuals in ANOVA suggested a pos-sible large intra-subtype/species variation. Therefore, the inter- and intra-subtype/species variations were studied using the model II ANOVA. The results showed that the in-tra-subtype/species variations accounted most of variation, which was 100% in total for both inter- and intra- subtype/species variations. Our analysis threw lights on the issue of how to de-termine a wide variety of patterns of antigenic variation across space and time, and within and between subtypes as well as hosts.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yan, S. and Wu, G. (2009) Determination of inter- and intra-subtype/species varia-tions in polymerase acidic protein from influenza A virus using amino-acid pair predictability. Journal of Biomedical Science and Engineering, 2, 273-279. doi: 10.4236/jbise.2009.24041.

References

[1] I. Capuaa and D. J. Alexander, (2008) Avian influenza vaccines and vaccination in birds, Vaccine, 26(4), D70-D73.
[2] N. Hehme, T. Colegate, B Palache, and L. Hessel, (2008) Influenza vaccine supply: Building long-term sustain-ability, Vaccine, 26(4), D23-D26.
[3] M. Hoelscher, S. Gangappa, W. Zhong, L. Jayashankar, and S. Sambhara, (2008) Vaccines against epidemic and pandemic influenza, Expert Opin. Drug Deliv., 5, 1139 -1157.
[4] B. Palache, (2008) New vaccine approaches for seasonal and pandemic influenza, Vaccine, 26, 6232-6236.
[5] J. C. Tilburt, P. S. Mueller, A. L. Ottenberg, G. A. Poland, and B. A. Kioenig, (2008) Facing the challenges of in-fluenza in healthcare settings: The ethical rationale for mandatory seasonal influenza vaccination and its impli-cations for future pandemics, Vaccine, 26(4), D27-D30.
[6] M. Peyre, G. Fusheng, S. Desvaux, and F. Roger, (2009) Avian influenza vaccines: A practical review in relation to their application in the field with a focus on the Asian experience, Epidemiol. Infect., 137, 1-21.
[7] A. W. Hampson, (2008) Vaccines for pandemic influenza: The history of our current vaccines, their limitations and the requirements to deal with a pandemic threat, Ann. Acad. Med. Singapore, 37, 510-517.
[8] N. Skeik and F. I. Jabr, (2008) Influenza viruses and the evolution of avian influenza virus H5N1, Int. J. Infect. Dis., 12, 233-238.
[9] D. Q. Wei, Q. S. Du, H. Sun, and K. C. Chou, (2006) Insights from modeling the 3D structure of H5N1 influ-enza virus neuraminidase and its binding interactions with ligands, Biochem. Biophys. Res. Commun., 344, 1048-1055.
[10] S. Q. Wang, Q. S. Du, and K. C. Chou, (2007) Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuramini-dases, Biochem. Biophys. Res. Commun., 354, 634-640.
[11] Q. S. Du, S. Q. Wang, and K. C. Chou, (2007) Analogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virus, Biochem. Biophys. Res. Commun., 362, 525-531.
[12] X. L. Guo, L. Li, D. Q. Wei, Y. S. Zhu, and K. C. Chou, (2008) Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin. Amino Acids, 35, 375-382.
[13] R. B. Huang, Q. S. Du, C. H. Wang, and K. C. Chou, (2008) An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of in-fluenza A virus, Biochem. Biophys. Res. Comm., 377, 1243-1247.
[14] Q. S. Du, R. B. Huang, C. H. Wang, X. M. Li, and K. C. Chou, (2009) Energetic analysis of the two controversial drug binding sites of the M2 proton channel in influenza A virus, J. Theoret. Biol., doi:10.1016/j.jtbi.2009.1003. 1003.
[15] J. R. Schnell, and J. J. Chou, (2008) Structure and mechanism of the M2 proton channel of influenza A vi-rus, Nature, 451, 591-595.
[16] R. M. Pielak, J. R. Jason, R. Schnell, and J. J. Chou, (2009) Mechanism of drug inhibition and drug resistance of influenza A M2 channel, Proc. Natl. Acad. Sci. USA, www. pnas.org cgi doi 10.1073 pnas.0902548106.
[17] K. C. Chou, (2001) Prediction of protein cellular attrib-utes using pseudo amino acid composition, PROTEINS: Structure, Function, and Genetics (Erratum: ibid., 2001, Vol.44, 60), 43, 246-255.
[18] K. C. Chou, (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21, 10-19.
[19] X. Xiao, S. H. Shao, Z. D. Huang, and K. C. Chou, (2006) Using pseudo amino acid composition to predict protein structural classes: Approached with complexity measure factor, J. Comput. Chem., 27, 478-482.
[20] X. Xiao, S. Shao, Y. Ding, Z. Huang, Y. Huang, and K. C. Chou, (2005) Using complexity measure factor to predict protein subcellular location, Amino Acids, 28, 57-61.
[21] X. Xiao and K. C. Chou, (2007) Digital coding of amino acids based on hydrophobic index, Protein Pept. Lett., 14, 871-875.
[22] X. Xiao, W. Z. Lin, and K. C. Chou, (2008) Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes, J. Comput. Chem., 29, 2018-2024.
[23] X. Xiao, P. Wang, and K. C. Chou, (2008) Predicting protein structural classes with pseudo amino acid com-position: An approach using geometric moments of cel-lular automaton image, J. Theoret. Biol., 254, 691-696.
[24] X. Xiao, P. Wang, and K. C. Chou, (2008) GPCR-CA: A cellular automaton image approach for predicting G- pro-tein-coupled receptor functional classes, J. Comput. Chem., DOI 10.1002/jcc.21163.
[25] X. Xiao, P. Wang, and K. C. Chou, (2009) Predicting protein quaternary structural attribute by hybridizing functional domain composition and pseudo amino acid composition, J. Appl. Crystallogr., 42, 169-173.
[26] G. Wu and S. Yan, (2002) Randomness in the primary structure of protein: Methods and implications, Mol. Biol. Today, 3, 55-69.
[27] G. Wu and S. Yan, (2006) Mutation trend of hemaggluti-nin of influenza A virus: a review from computational mutation viewpoint, Acta Pharmacol. Sin., 27, 513-526.
[28] G. Wu and S. Yan, (2008) Lecture notes on computational mutation, Nova Science Publishers, New York.
[29] O. G. Engelhardt and E. Fodor, (2006) Functional asso-ciation between viral and cellular transcription during in-fluenza virus infection, Rev. Med. Virol., 16, 329-345.
[30] A. Honda and A. Ishihama, (1997) The molecular anat-omy of influenza virus RNA polymerase, Biol. Chem., 378, 483-488.
[31] T. Watanabe, S. Watanabe, K. Shinya, J. H. Kim, M. Hatta, and Y. Kawaoka, (2009) Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets, Proc. Natl. Acad. Sci. USA, 106, 588-592.
[32] K. C. Chou and H. B. Shen, (2008) Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms, Nature Prot., 3, 153-162.
[33] K. C. Chou and H. B. Shen, (2007) Review: Recent pro-gresses in protein subcellular location prediction, Analyt. Biochem., 370, 1-16.
[34] K. C. Chou and H. B. Shen, (2007) Euk-mPLoc: A fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites, J. Proteome Res., 6, 1728-1734.
[35] H. B. Shen and K. C. Chou, (2009) QuatIdent: A web server for identifying protein quaternary structural attrib-ute by fusing functional domain and sequential evolution information, J. Proteome Res., 8, 1577-1584.
[36] K. C. Chou and H. B. Shen, (2007) MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse- PSSM, Biochem. Biophys. Res. Commun., 360, 339-345.
[37] T. Wang, J. Yang, H. B. Shen, and K. C. Chou, (2008) Predicting membrane protein types by the LLDA algo-rithm, Protein Pept. Lett., 15, 915-921.
[38] H. B. Shen and K. C. Chou. (2007) EzyPred: A top-down approach for predicting enzyme functional classes and subclasses, Biochem. Biophys. Res. Commun., 364, 53- 59.
[39] K. C. Chou and D. W. Elrod, (2002) Bioinformatical analysis of G-protein-coupled receptors, J. Proteome Res., 1, 429-433.
[40] K. C. Chou, (2005) Prediction of G-protein-coupled re-ceptor classes, J. Proteome Res., 4, 1413-1418.
[41] K. C. Chou and H. B. Shen, (2008) ProtIdent: A web server for identifying proteases and their types by fusing functional domain and sequential evolution information, Biochem. Biophys, Res. Comm., 376, 321-325.
[42] H. B. Shen and K. C. Chou. (2009) Identification of pro-teases and their types, Analyt. Biochem., 385, 153-160.
[43] K. C. Chou, (1993) A vectorized sequence-coupling model for predicting HIV protease cleavage sites in pro-teins, J. Biol. Chem., 268, 16938-16948.
[44] K. C. Chou, (1996) Review: Prediction of HIV protease cleavage sites in proteins, Analyt. Biochem., 233, 1-14.
[45] H. B. Shen and K. C. Chou, (2008) HIVcleave: a web- server for predicting HIV protease cleavage sites in pro-teins, Analyt. Biochem., 375, 388-390.
[46] K. C. Chou and H. B. Shen, (2007) Signal-CF: A subsite- coupled and window-fusing approach for predicting sig-nal peptides, Biochem. Biophys. Res. Commun., 357, 633-640.
[47] H. B. Shen and K. C. Chou, (2007) Signal-3L: A 3-layer approach for predicting signal peptide, Biochem. Bio-phys. Res. Commun., 363, 297-303.
[48] K. C. Chou, (2004) Review: Structure bioinformatics and its impact to biomedical science, Curr. Med. Chem., 11, 2105-2134.
[49] R. Apweiler, A. Bairoch and C. H. Wu. (2005) Protein sequence databases, Curr. Opin. Chem. Biol., 8, 76-80.
[50] G. Wu and S. Yan, (2008) Prediction of mutations engi-neered by randomness in H5N1 neuraminidases from in-fluenza A virus, Amino Acids, 34, 81-90.
[51] G. Wu and S. Yan, (2008) Prediction of mutations initi-ated by internal power in H3N2 hemagglutinins of influ-enza A virus from North America, Int. J. Pept. Res. Ther., 14, 41-51.
[52] G. Wu and S. Yan, (2008) Prediction of mutation in H3N2 hemagglutinins of influenza A virus from North America based on different datasets, Protein Pept. Lett., 15, 144-152.
[53] G. Wu and S. Yan, (2008) Three sampling strategies to predict mutations in H5N1 hemagglutinins from influ-enza A virus, Protein Pept. Lett., 15, 731-738.
[54] G. Wu and S. Yan. (2008) Prediction of mutations engi-neered by randomness in H5N1 hemagglutinins of influ-enza A virus, Amino Acids, 35, 365-373.
[55] E. Spackman, (2008) A brief introduction to the avian influenza virus, Methods Mol. Biol., 436, 1-6.
[56] SPSS Inc. (1992-2003) SigmaStat for windows version 3.00.
[57] R. R. Sokal and F. J. Rohlf, (1995) Biometry: The princi-ples and practices of statistics in biological research, 2nd ed, W. H. Freeman, New York, 203-218.
[58] G, Wu, M. Baraldo, and M. Furlanut, (1999) Inter-patient and intra-patient variations in the baseline tapping test in patients with Parkinson’s disease, Acta Neurol. Belg., 99, 182-184.
[59] M. Furlanut, G. Wu, and E. Perucca, (2001) Variability in the metabolism of levodopa and clinical implications, In: Interindividual Variability in Drug Metabolism in Man. eds. by Pacifici GM, Pelkonen O, Tayler & Francis, London and New York, Chapter 7, 181-227.
[60] M. Lipsitch and J. J. O’Hagan, (2007) Patterns of anti-genic diversity and the mechanisms that maintain them, J. R. Soc. Interface, 4, 787-802.
[61] J. A. Mumford, (2007) Vaccines and viral antigenic di-versity, Rev. Sci. Tech., 26, 69-90.
[62] F. Carrat and A. Flahault, (2007) Influenza vaccine: The challenge of antigenic drift, Vaccine, 25, 6852-6862.
[63] K. M. Grebe, J. W. Yewdell, and J. R. Bennink, (2008) Heterosubtypic immunity to influenza A virus, where do we stand? Microbes. Infect., 10, 1024-1029.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.