[1]
|
Barakat, M.A. (2011) New Trends in Removing Heavy Metals from Industrial Wastewater. Arabian Journal of Chemistry, 4, 361-377. http://dx.doi.org/10.1016/j.arabjc.2010.07.019
|
[2]
|
Duran, A., Soylak, M. and Tuncel, S.A. (2008) Poly(Vinyl Pyridine-Poly Ethylene Glycol Methacrylate-Ethylene Glycol Dimethacrylate) Beads for Heavy Metal Removal. Journal of Hazardous Materials, 155, 114-120. http://dx.doi.org/10.1016/j.jhazmat.2007.11.037
|
[3]
|
Al-Qudah, Y.H.F., Mahmoud, G.A. and Abdel Khalek, M.A. (2014) Radiation Crosslinked Poly (Vinyl Alcohol)/ Acrylic Acid Copolymer for Removal of Heavy Metal Ions from Aqueous Solutions. Journal of Radiation Research and Applied Sciences, 7, 135-145. http://dx.doi.org/10.1016/j.jrras.2013.12.008
|
[4]
|
Abd El-Mohdy, H.L., Hegazy, E.A., El-Nesr, E.M. and El-Wahab, M.A. (2013) Metal Sorption Behavior of Poly(N- vinyl-2-pyrrolidone)/(Acrylic Acid-Co-Styrene). Journal of Environmental Chemistry Engineering, 1, 328-338. http://dx.doi.org/10.1016/j.jece.2013.05.013
|
[5]
|
Kancy, J. (1996) Microcomputer Program for Analysis of Positron Annihilation Lifetime Spectra. Nuclear Instruments and Methods in Physics Research, 374, 235. http://dx.doi.org/10.1016/0168-9002(96)00075-7
|
[6]
|
Schmidt, M. and Maurer, F. (2000) Relation between Free-Volume Quantities from PVT-EOS Analysis and PALS. Polymer, 41, 8419-8424. http://dx.doi.org/10.1016/S0032-3861(00)00181-6
|
[7]
|
Eldrup, M., Lightbody, D. and Sherwood, J. (1981) The Temperature Dependence of Positron Lifetimes in Solid Pivalic Acid. Journal of Chemical Physics, 63, 51-58. http://dx.doi.org/10.1016/0301-0104(81)80307-2
|
[8]
|
Tao, S. (1972) Positronium Annihilation in Molecular Substances. Journal of Chemical Physics, 56, 5499-5510. http://dx.doi.org/10.1063/1.1677067
|
[9]
|
Jean, Y. (1990) Positron Annihilation Spectroscopy for Chemical Analysis: A Novel Probe for Microstructural Analysis of Polymers. Microchemical Journal, 42, 72-102. http://dx.doi.org/10.1016/0026-265X(90)90027-3
|
[10]
|
Farag, R.K. and Mohamed, R.R. (2012) Synthesis and Characterization of Carboxymethyl Chitosan Nanogels for Swelling Studies and Antimicrobial Activity. Molecules, 18, 190-203. http://dx.doi.org/10.3390/molecules18010190
|
[11]
|
García, M.A., de la Paz, N., Castro, C., Rodríguez, J.L., Rapado, M., Zuluaga, R., Gaán, P. and Casariego, A. (2015) Effect of Molecular Weight Reduction by Gamma Irradiation on the Antioxidant Capacity of Chitosan from Lobster Shells. Journal of Radiation Research and Applied Sciences, 8, 190-200.
|
[12]
|
Budianto, E., Mahendra, A. and Yudianti, R. (2013) Radiation Synthesis of Superabsorbent Poly(acrylamide-co-acrylic acid)-Sodium Alginate Hydrogels. Advanced Materials Research, 746, 88-96. http://dx.doi.org/10.4028/www.scientific.net/AMR.746.88
|
[13]
|
Dai, J., Yan, H., Yang, H. and Cheng, R. (2010) Simple Method for Preparation of Chitosan/Poly(acrylic acid) Blending Hydrogel Beads and Adsorption of Copper (II) from Aqueous Solutions. Chemical Engineering Journal, 165, 240- 249. http://dx.doi.org/10.1016/j.cej.2010.09.024
|
[14]
|
Zhao, L. and Mitomo, H. (2008) Adsorption of Heavy Metal Ions from Aqueous Solution onto Chitosan Entrapped CM-Cellulose Hydrogels Synthesized by Irradiation. Journal of Applied Polymer Science, 110, 1388-1395. http://dx.doi.org/10.1002/app.28718
|
[15]
|
Zhu, L., Zhang, L. and Tang, Y. (2012) Synthesis of Montmorillonite/Poly(acrylic acid-co-2-acrylamido-2-methyl-1- propane sulfonic acid) Superabsorbent Composite and the Study of Its Adsorption. Bulletin of the Korean Chemical Society, 33, 1669-1674. http://dx.doi.org/10.5012/bkcs.2012.33.5.1669
|
[16]
|
El-Hag Ali, A., Shawky, H.A., Abd El Rehim, H.A. and Hegazy, E.A. (2003) Synthesis and Characterization of PVP/AAc Copolymer Hydrogel and Its Applications in the Removal of Heavy Metals from Aqueous Solution. European Polymer Journal, 39, 2337-2344. http://dx.doi.org/10.1016/S0014-3057(03)00150-2
|
[17]
|
Zhang, Y.J., Chi, H.J., Zhang, W.H., Sun, Y.Y., Liang, Q., Gu, Y. and Jing, R.Y. (2014) Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based on a New Adsorptions Mechanism. Nano-Micro Letters, 6, 80-87. http://dx.doi.org/10.1007/BF03353772
|