[1]
|
Benjamin, T.B., Bona, J.L. and Mahony, J.J. (1972) Model Equations for Long Waves in Nonlinear Dispersive System. Philosophical Transactions of the Royal Society A, 272, 47-78.
|
[2]
|
Ugurlu, Y. and Kaya D. (2008) Solutions of the Cahn-Hilliard Equation. Computers and Mathematics with Applications, 56, 3038-3045. http://dx.doi.org/10.1016/j.camwa.2008.07.007
|
[3]
|
Wazwaz, A.-M. (2005a) Exact Solutions of Compact and Noncompact Structures for the KP-BBM Equation. Applied Mathematics and Computation, 169, 700-712. http://dx.doi.org/10.1016/j.amc.2004.09.061
|
[4]
|
Wazwaz, A.-M. (2005b) Compact and Noncompact Physical Structures for the ZK-BBM Equation. Applied Mathematics and Computation, 169, 713-725. http://dx.doi.org/10.1016/j.amc.2004.09.062
|
[5]
|
Wazwaz, A.-M. (2005c) Exact Solutions with Compact and Noncompact Structures for the One-Dimensional Generalized Benjamin Bona Mahony Equation. Communications in Nonlinear Science and Numerical Simulation, 10, 855-867. http://dx.doi.org/10.1016/j.cnsns.2004.06.002
|
[6]
|
Al-Khaled, K., Momani, S. and Alawneh, A. (2005) Approximate Wave Solutions for Generalized Benjamin Bona Mahony Burgers Equations. Applied Mathematics and Computation, 171, 281-292.
http://dx.doi.org/10.1016/j.amc.2005.01.056
|
[7]
|
Furihata, D. (2001) A Stable and Conservative Finite Difference Scheme for the Cahn-Hilliard Equation. Numerische Mathematik, 87, 675-699. http://dx.doi.org/10.1007/PL00005429
|
[8]
|
Kim, J. (2007) A Numerical Method for the Cahn-Hilliard Equation with a Variable Mobility. Communications in Nonlinear Sciences and Numerical Simulation, 12, 1560-1571. http://dx.doi.org/10.1016/j.cnsns.2006.02.010
|
[9]
|
Wells, G.N., Kuhl, E. and Garikipati, K. (2006) A Discontinuous Galerkin Method for the Cahn-Hilliard Equation. Journal of Computational Physics, 218, 860-877. http://dx.doi.org/10.1016/j.jcp.2006.03.010
|
[10]
|
Kourosh, P. and Jamal, A.R. (2012) Exp-Function Method for Some Nonlinear PDE’s and a Nonlinear ODE’s. Journal of King Saud University, 24, 1-10. http://dx.doi.org/10.1016/j.jksus.2010.08.004
|
[11]
|
Alquran, M.T. (2012) Applying Differential Transform Method to Nonlinear Partial Differential Equations: A Modified Approach. Applications and Applied Mathematics, 7, 155-163.
|
[12]
|
Adomian, G., Rach, R. and Shawagfeh, N.T. (1995) On the Analytic Solution of the Lane-Emden Equation. Physics Letters, 8, 161-181. http://dx.doi.org/10.1007/bf02187585
|
[13]
|
Adomian, G. and Serrano, S.E. (1998) Stochastic Contaminant Transport Equation in Porous Media. Applications and Applied Mathematics, 11, 53-55. http://dx.doi.org/10.1016/S0893-9659(97)00132-8
|
[14]
|
Adomian, G. (1994) Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston.
|
[15]
|
Mohamed, M.S. (2015) Adomian Decomposition Method for Solving Coupled KdV Equations. Journal of Advances in Mathematics, 10, 3472-3478.
|
[16]
|
Abdou, M.A. (2005) Adomian Decomposition Method for Solving the Telegraph Equation in Charged Particle Transport. Journal of Quantitative Spectroscopy and Radiative Transfer, 95, 407-414.
http://dx.doi.org/10.1016/j.jqsrt.2004.08.045
|
[17]
|
Wu, G.C. (2013) Challenge in the Variational Iteration Method—A New Approach to Identification of the Lagrange Multipliers. Journal of King Saud University—Science, 25, 175-178. http://dx.doi.org/10.1016/j.jksus.2012.12.002
|
[18]
|
He, J.H. (1999) Variational Iteration Method—A Kind of Non-Linear Analytical Technique: Some Examples. International Journal of Non-Linear Mechanics, 34, 699-708. http://dx.doi.org/10.1016/S0020-7462(98)00048-1
|