Share This Article:

Magneto Hydrodynamic Orthogonal Stagnation Point Flow of a Power-Law Fluid Toward a Stretching Surface

Abstract Full-Text HTML Download Download as PDF (Size:625KB) PP. 129-133
DOI: 10.4236/ajcm.2011.12013    5,349 Downloads   10,489 Views   Citations


Steady two dimensional MHD stagnation point flow of a power law fluid over a stretching surface is investigated when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation point. The fluid impinges on the surface is considered orthogonally. Numerical and analytical solutions are obtained for different cases.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Patel and M. Timol, "Magneto Hydrodynamic Orthogonal Stagnation Point Flow of a Power-Law Fluid Toward a Stretching Surface," American Journal of Computational Mathematics, Vol. 1 No. 2, 2011, pp. 129-133. doi: 10.4236/ajcm.2011.12013.


[1] H. A. Attai, “Stagnation Point Flow towards a Stretching Sur-face through a Porous Medium with Heat Generation,” Turkish Journal of Engineering & Environmental Scien- ces, Vol. 30, No. 5, 2006, pp. 299-306.
[2] F. M. Hayd and I. A. Hassanien, “Magnetohydrodynamic and Constant Suction/Injection Effects of Axisymmetric Stagnation Point Flow and Mass Transfer for Power-Law Fluids,” Indian Journal of Pure and Applied Mathematics, Vol. 17, No. 1, 1986, pp. 108-120.
[3] F. Lab-ropulu and D. Li, “Stagnation Point Flow of a Second-Grade Fluid with Slip,” International Journal of Non-Linear Mechan-ics, Vol. 43, No. 9, 2008, pp. 941-947. doi:10.1016/j.ijnonlinmec.2008.07.004
[4] B. Norfifah and I. Anuar, “MHD Stagnation-Point Flow of a Micropolar Fluid with Prescribed Wall Heat Flux,” European Journal of Scien-tific Research, Vol. 35 No. 3, 2009, pp. 436-443.
[5] M. Patel and M. G. Timol, “Numerical Solution of Steady Two-Dimensional MHD forward Stagnation Point Flow,” Ap-plied Mathematical Science, Vol. 3, No. 4, 2009, pp. 187-193.
[6] K. Hiemenz, “Die Grenzschicht an Einem in Den Gleichformingen Flussigkeitsstrom Eingetauchten Graden Krei- szylinder,” Dingler’s Polytechnic Journal, Vol. 326, 1911, pp. 321-324.
[7] F. Homann, “Der Einfluss Grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel,” Journal of Applied Mathematics and Mechanics/Zeitschrift für Ange-wandte Mathematik und Mechani, Vol. 16, No. 3, 1936, pp. 153-164. doi:10.1002/zamm.19360160304
[8] T. Y. Na, “Computational Methods in Engineering Boundary Value Problems,” Academic Press, New York, 1979.
[9] P. D. Ariel, “Hiemenz Flow in Hydromagnetics,” Acta Mechanica, Vol. 103, No. 1-4, 1994, pp. 31-43.
[10] K. R. Rajagopal, T. Y. Na and A. S. Gupta, “A Non Similar Boundary Layer on a Stretching Sheet in a Non-Newtonian Fluid with Uniform Free Stream,” Journal of Mathematical Physics, Vol. 21, No. 2, 1987, pp. 189-200.
[11] K. R. Rajagopal, T. Y. Na and A. S. Gupta, “Flow of a Viscoelastic Fluid over a Stretching Sheet,” Rheologica Acta, Vol. 23, No. 2, 1984, pp. 213-215. doi:10.1007/BF01332078
[12] T. C. Chiam, “Stagnation-Point Flow towards a Stretching Plate,” Journal of the Physical Soci-ety of Japan, Vol. 63, No. 6, 1994, pp. 2443-2444. doi:10.1143/JPSJ.63.2443
[13] T. R. Mahapatra and A. S. Gupta, “Heat Transfer in Stagnation-Point Flow towards a Stretching Sheet,” Heat Mass Transfer, Vol. 38, No. 6, 2002, pp. 517-521. doi:10.1007/s002310100215
[14] T. C. Chiam, “Solution for the Flow of a Conducting Power-Law Fluid in a Transverse Magnetic Field and with a Pressure Gradient Using Crocco Variables,” Acta Mechanica, Vol. 137, No. 3-4, 1999, pp. 225-235.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.