Molecular Markers for Tm-2 Alleles of Tomato Mosaic Virus Resistance in Tomato

Abstract

Tomato mosaic virus (ToMV) is one of the most infectious virus diseases in tomato (Solanum lycopersicum L). The practical and effective method of controlling this disease is through genetic control by using major resistance genes. So far, three genes Tm-1, Tm-2 and Tm-22 conferring resistance to ToMV have been reported and utilized in tomato culti-var development. Marker assisted selection (MAS) has become very important and useful tool in selection of ToMV re-sistant tomato lines or hybrids. The objective of this research was to identify allele-specific PCR-based, cleaved ampli-fied polymorphic sequence (CAPS), and allele-derived single nucleotide polymorphism (SNP) markers for Tm-2 loci. Four allele-specific PCR-based markers were identified: one for Tm-2, one for Tm-22, and two for the susceptible allele tm-2. Three allele-derived CAPS markers were identified, which can identify and distinguish three alleles, tm-2, Tm-2 and Tm-22 in tomato germplasm. Three SNP markers were developed specific for Tm-2 locus. These markers will pro-vide breeders with a tool in selection of Tm-2 and Tm-22 resistance genes in tomato breeding program.

Share and Cite:

A. Shi, R. Vierling, R. Grazzini, P. Chen, H. Caton and D. Panthee, "Molecular Markers for Tm-2 Alleles of Tomato Mosaic Virus Resistance in Tomato," American Journal of Plant Sciences, Vol. 2 No. 2, 2011, pp. 180-189. doi: 10.4236/ajps.2011.22020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. R. Foolad, “Genome Mapping and Molecular Breeding of Tomato,” International Journal of Plant Genomics, Vol. 2007, 2007, Article ID 64358, 52 pages. doi:10.1155/2007/64358
[2] T. J. Hall, “Resistance at the Tm-2 Locus in the Tomato to Tomato Mosaic Virus,” Euphytica, Vol. 29, No. 1, 1989, pp. 189-197. doi:10.1007/BF00037266
[3] F. C. Lanfermeijer, J. Dijkhuis, M. J. G. Sturre, P. de Haan and J. Hille, “Cloning and Characterization of the Durable Tomato Mosaic Virus Resistance Gene Tm-22 from Lycopersicon Esculentum,” Plant Molecular Biology, Vol. 52, No. 5, 2003, pp. 1037-1049. doi:10.1023/A:1025434519282
[4] H. Levesque, F. Vedel, C. Mathieu and A. G. L. de Courcel, “Identification of a Short Rdna Spacer Sequence Highly Specific of a Tomato Line Containing Tm-1 Gene Introgressed from Lycopersicon Hirsutum,” Theoretical and Applied Genetics, Vol. 80, No. 5, 1990, pp. 602-608. doi:10.1007/BF00224218
[5] J. Pelham, “Resistance in Tomato to Tobacco Mosaic Virus,” Euphytica, Vol. 15, 1966, pp. 258-267. doi:10.1007/BF00022331
[6] M. R. Foolad and A. Sharma, “Molecular Markers as Selection Tools in Tomato Breeding,” ISHS Acta Horticulturae, Vol. 695, 2005, pp. 225-240.
[7] T. Ohmori, M. Murata and F. Motoyoshi, “Molecular Characterization of RAPD and SCAR Markers Linked to the Tm-1 Locus in Tomato,” Theoretical and Applied Genetics, Vol. 92, No. 1996, pp. 151-156.
[8] S. D. Tanksley, M. W. Ganal, J. P. Prince, M. C. de Vicente, M. W. Bonierbale, P. Broun, T. M. Fulton, J. J. Giovannoni, S. Grandillo and G. B. Martin, “High Density Molecular Linkage Maps of the Tomato and Potato Genomes,” Genetics, Vol. 132, No. 4, 1992, pp. 1141-1160.
[9] D. J. Vakalounakis, H. Laterrot, A. Moretti, E. K. Ligoxigakis and K. Smardas, “Linkage between Fr1 (Fusarium Oxysporum f sp Radicis-Lycopersici Resistance) and Tm-2 (Tobacco Mosaic Virus Resistance-2) Loci in Tomato (Lycopersicon Esculentum),” Annals of Applied Biology, Vol. 130, 1997, pp. 319-323. doi:10.1111/j.1744-7348.1997.tb06835.x
[10] T. Ohmori, M. Murata and F. Motoyoshi, “Identification of RAPD Markers Linked to the Tm-2 Locus in Tomato,” Theoretical and Applied Genetics, Vol. 90, 1995, pp. 307-311. doi:10.1007/BF00221969
[11] F. Motoyoshi, T. Ohmori and M. Murata, “Molecular Characterization of Heterochromatic Regions around the Tm-2 Locus in Chromosome 9 of Tomato,” Symposium of the Society for Experimental Biology, Vol. 50, 1996, pp. 65-70.
[12] Sobir, T. Ohmori, M. Murata and F. Motoyoshi, “Molecular Characterization of the SCAR Markers Tightly Linked to the Tm-2 Locus of the Genus Lycopersicon,” Theoretical and Applied Genetics, Vol. 101, No. 1-2, 2000, pp. 64-69. doi:10.1007/s001220051450
[13] E. Dax, O. Livneh, E. Aliskevicius, N. Kedar, N. Gavish, J. Milo, F. Geffen, A. Blumenthal, H. D. Rabinowich and I. Sela, “A SCAR Marker Linked to the Tomv Resistance Gene, Tm22, in Tomato,” Euphytica, Vol. 101, No. 1, May 1998, pp. 73-77. doi:10.1023/A:1018307326636
[14] F. C. Lanfermeijer, J. Warmink and J. Hille, “The Products of the Broken Tm-2 and the Durable Tm-22 Resistance Genes from Tomato Differ in Four Amino Acids,” Journal of Experimental Botany, Vol. 56, No. 421, November 2005, pp. 2925-2933. doi:10.1093/jxb/eri288
[15] P. Arens, C. Mansilla, D. Deinum, L. Cavellini, A. Moretti, S. Rolland, H. van der Schoot, D. Calvache, F. Ponz, C. Collonnier, R. Mathis, D. Smilde, C. Caranta and B. Vosman, “Development and Evaluation of Robust Molecular Markers Linked to Disease Resistance in Tomato for Distinctness, Uniformity and Stability Testing,” Theoretical and Applied Genetics, Vol. 120, No. 3, 2010, pp. 655-664. doi:10.1007/s00122-009-1183-2
[16] I. Y. Choi, D. L. Hyten, L. K. Matukumalli, Q. Song, J. M. Chaky, C. V. Quigley, K. Chase, K. G. Lark, R. S. Reiter, M. Yoon, E. Hwang, S. Yi, N. D. Young, R. C. Shoemaker, C. P. van Tassell, J. E. Specht and P. B. Cregan, “A Soybean Transcript Map: Gene Distribution, Haplotype and Single Nucleotide Polymorphism Analysis,” Genetics, Vol. 176, No. 1, May 2007, pp. 685-696. doi:10.1534/genetics.107.070821
[17] S. Giancola, H. I. McKhann, A. Berard, C. Camilleri, S. Durand, P. Libeau, F. Roux, X. Rebound, I. G. Gut and D. Brunel, “Utilization of Three High-Throughput SNP Genotyping Methods, the GOOD Assay, Amplifluor and Taqman, in Diploid and Polyploidy Plants,” Theoretical and Applied Genetics, Vol. 112, No. 6, 2006, pp. 1115-1124. doi:10.1007/s00122-006-0213-6
[18] J. A. Labate and A. M. Baldo, “Tomato SNP Discovery by EST Mining and Resequencing,” Molecular Breeding, Vol. 16, No. 4, November 2005, pp. 343-349. doi:10.1007/s11032-005-1911-5
[19] J. M. Jimenez-Gomez and J. N. Maloof , “Sequence Diversity in Three Tomato Species: Snps, Markers, and Molecular Evolution,” BMC Plant Biology, Vol. 9, July 2009, p. 85. doi:10.1186/1471-2229-9-85
[20] J. A. Rafalski, “Application of Single Nucleotide Polymorphisms in Crop Genetics,” Current Opinion in Plant Biology, Vol. 5, No. 2, April 2002, pp. 94-100. doi:10.1016/S1369-5266(02)00240-6
[21] A. Shi, R. Vierling, R. Grazzini, P. Chen, H. Caton and Y. Weng, “Development of Single Nucleotide Polymorphism Markers for Selection of Ve Gene of Tomato Verticillium Wilt Resistance,” International Research Journal of Plant Science, Vol. 1, No. 2, August 2010, pp. 034-042.
[22] W. Yang, S. A. Miller, J. W. Scott, J. B. Jones and D. M. Francis, “Ming Tomato Genome Sequence Databases for Molecular Markers: Application to Bacterial Resistance and Marker Assisted Selection,” Acta Hort (ISHS), Vol. 695, 2005, pp. 241-250.
[23] W. Yang, X. Bai, E. Kabelka, C. Eaton, S. Kamoun, E. van-der-Knaap and D. Francis, “Discovery of Single Nucleotide Polymorphisms in Lycopersicon Esculentum by Computer Aided Analysis of Expressed Sequence Tags,” Molecular Breeding, Vol. 14, No. 1, 2004, pp. 21-34. doi:10.1023/B:MOLB.0000037992.03731.a5
[24] N. Acciarri, G. L. Rotino, G. Tamietti, D. Valentino, S. Voltattorni and E. Sabatini, “Molecular Markers for Ve1 and Ve2 Verticillium Resistance Genes from Italian Tomato Germplasm,” Plant Breeding, Vol. 126, No. 6, December 2007, pp. 617-621. doi:10.1111/j.1439-0523.2007.01398.x
[25] J. J. Doyle and J. L. Doyle, “Isolation of Plant DNA from Fresh Tissue,” Focus, Vol. 12, No. 1, 1990, pp. 13-15.
[26] P. J. Bradbury, A. Zhang, D. E. Kroon, T. C. Casstevens, Y. Ram-doss and E. S. Buckler, “TASSEL Software for Association Mapping of Complex Traits in Diverse Samples,” Bioinformatics, Vol. 23, No. 19, June 2007, pp. 2633-2635. doi:10.1093/bioinformatics/btm308

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.