[1]
|
Chen, W. and Jinks-Robertson, S. (1998) Mismatch Repair Proteins Regulate Heteroduplex Formation during Mitotic Recombination in Yeast. Molecular and Cellular Biology, 18, 6525-6537.
|
[2]
|
Kolodner, R.D. and Marsischky, G.T. (1999) Eukaryotic DNA Mismatch Repair. Current Opinion in Genetics & Development, 9, 89-96. http://dx.doi.org/10.1016/S0959-437X(99)80013-6
|
[3]
|
Jiricny, J. (2006) The Multifaceted Mismatch-Repair System. Nature Reviews Molecular Cell Biology, 7, 335-346. http://dx.doi.org/10.1038/nrm1907
|
[4]
|
Eshleman, J.R., Lang, E.Z., Bowerfind, G.K., Parsons, R., Vogelstein, B., Willson, J.K., Veigl, M.L., Sedwick, W.D. and Markowitz, S.D. (1995) Increased Mutation Rate at the Hprt Locus Accompanies Microsatellite Instability in Colon Cancer. Oncogene, 10, 33-37.
|
[5]
|
Iyer, R.R., Pluciennik, A., Burdett, V. and Modrich, P.L. (2006) DNA Mismatch Repair: Functions and Mechanisms. Chemical Reviews, 106, 302-323. http://dx.doi.org/10.1021/cr0404794
|
[6]
|
Pegg, A.E. (2000) Repair of O6-Alkylguanine by Alkyltransferases. Mutation Research/Reviews in Mutation Research, 462, 83-100. http://dx.doi.org/10.1016/S1383-5742(00)00017-X
|
[7]
|
Xiao, W., Derfler, B., Chen, J. and Samson, L. (1991) Primary Sequence and Biological Functions of a Saccharomyces cerevisiae O6-Methylguanine/O4-Methylthymine DNA Repair Methyltransferase Gene. EMBO Journal, 10, 2179-2186.
|
[8]
|
Swann, P.F. (1990) Why Do O6-Alkylguanine and O4-Alkylthymine Miscode? The Relationship between the Structure of DNA Containing O6-Alkylguanine and O4-Alkylthymine and the Mutagenic Properties of These Bases. Mutation Research, 233, 81-94. http://dx.doi.org/10.1016/0027-5107(90)90153-U
|
[9]
|
Cejka, P. and Jiricny, J. (2008) Interplay of DNA Repair Pathways Controls Methylation Damage Toxicity in Saccharomyces cerevisiae. Genetics, 179, 1835-1844. http://dx.doi.org/10.1534/genetics.108.089979
|
[10]
|
Cejka, P., Stojic, L., Mojas, N., Russell, A.M., Heinimann, K., Cannavo, E., di Pietro, M., Marra, G. and Jiricny, J. (2003) Methylation-Induced G(2)/M Arrest Requires a Full Complement of the Mismatch Repair Protein hMLH1. Embo Journal, 22, 2245-2254. http://dx.doi.org/10.1093/emboj/cdg216
|
[11]
|
Pegg, A.E., Dolan, M.E. and Moschel, R.C. (1995) Structure, Function, and Inhibition of O6-Alkylguanine-DNA Alkyltransferase. Progress in Nucleic Acid Research and Molecular Biology, 51, 167-223. http://dx.doi.org/10.1016/S0079-6603(08)60879-X
|
[12]
|
Haracska, L., Prakash, S. and Prakash, L. (2000) Replication past O(6)-Methylguanine by Yeast and Human DNA Polymerase Eta. Molecular and Cellular Biology, 20, 8001-8007. http://dx.doi.org/10.1128/MCB.20.21.8001-8007.2000
|
[13]
|
York, S.J. and Modrich, P. (2006) Mismatch Repair-Dependent Iterative Excision at Irreparable O6-Methylguanine Lesions in Human Nuclear Extracts. Journal of Biological Chemistry, 281, 22674-22683. http://dx.doi.org/10.1074/jbc.M603667200
|
[14]
|
Karran, P. (2001) Mechanisms of Tolerance to DNA Damaging Therapeutic Drugs. Carcinogenesis, 22, 1931-1937. http://dx.doi.org/10.1093/carcin/22.12.1931
|
[15]
|
Karran, P. and Hampson, R. (1996) Genomic Instability and Tolerance to Alkylating Agents. Journal of Cancer Survivorship, 28, 69-85.
|
[16]
|
van Gent, D.C., Hoeijmakers, J.H. and Kanaar, R. (2001) Chromosomal Stability and the DNA Double-Stranded Break Connection. Nature Reviews Genetics, 2, 196-206. http://dx.doi.org/10.1038/85243
|
[17]
|
Sonoda, E., Hochegger, H., Saberi, A., Taniguchi, Y. and Takeda, S. (2006) Differential Usage of Non-Homologous End-Joining and Homologous Recombination in Double Strand Break Repair. DNA Repair, 5, 1021-1029. http://dx.doi.org/10.1016/j.dnarep.2006.05.022
|
[18]
|
Jeggo, P.A. (1998) Identification of Genes Involved in Repair of DNA Double-Strand Breaks in Mammalian Cells. Radiation Research, 150, S80-S91. http://dx.doi.org/10.2307/3579810
|
[19]
|
Sung, P., Trujillo, K.M. and Van Komen, S. (2000) Recombination Factors of Saccharomyces cerevisiae. Mutation Research, 451, 257-275. http://dx.doi.org/10.1016/S0027-5107(00)00054-3
|
[20]
|
van den Bosch, M., Lohman, P.H. and Pastink, A. (2002) DNA Double-Strand Break Repair by Homologous Recombination. Journal of Biological Chemistry, 383, 873-892.
|
[21]
|
Haber, J.E. (1995) In Vivo Biochemistry: Physical Monitoring of Recombination Induced by Site-Specific Endonucleases. Bioessays, 17, 609-620. http://dx.doi.org/10.1002/bies.950170707
|
[22]
|
Symington, L.S. (2002) Role of RAD52 Epistasis Group Genes in Homologous Recombination and Double-Strand Break Repair. Microbiology and Molecular Biology Reviews, 66, 630-670. http://dx.doi.org/10.1128/MMBR.66.4.630-670.2002
|
[23]
|
Daley, J.M., Palmbos, P.L., Wu, D. and Wilson, T.E. (2005) Nonhomologous End Joining in Yeast. Annual Review of Genetics, 39, 431-451. http://dx.doi.org/10.1146/annurev.genet.39.073003.113340
|
[24]
|
Dudasova, Z., Dudas, A. and Chovanec, M. (2004) Non-Homologous End-Joining Factors of Saccharomyces cerevisiae. FEMS Microbiology Reviews, 28, 581-601. http://dx.doi.org/10.1016/j.femsre.2004.06.001
|
[25]
|
Martin, S.G., Laroche, T., Suka, N., Grunstein, M. and Gasser, S.M. (1999) Relocalization of Telomeric Ku and SIR Proteins in Response to DNA Strand Breaks in Yeast. Cell, 97, 621-633. http://dx.doi.org/10.1016/S0092-8674(00)80773-4
|
[26]
|
Chen, L., Trujillo, K., Ramos, W., Sung, P. and Tomkinson, A.E. (2001) Promotion of Dnl4-Catalyzed DNA End-Joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 Complexes. Molecular Cell, 8, 1105-1115. http://dx.doi.org/10.1016/S1097-2765(01)00388-4
|
[27]
|
Alani, E.R., Reenan, A. and Kolodner, R.D. (1994) Interaction between Mismatch Repair and Genetic Recombination in Saccharomyces cerevisiae. Genetics, 137, 19-39.
|
[28]
|
Tishkoff, D.X., Filosi, N., Gaida, G.M. and Kolodner, R.D. (1997) A Novel Mutation Avoidance Mechanism Dependent on Saccharomyces cerevisiae RAD27 Is Distinct from DNA Mismatch Repair. Cell, 88, 253-263. http://dx.doi.org/10.1016/S0092-8674(00)81846-2
|
[29]
|
Redon, C., Pilch, D.R. and Bonner, W.M. (2006) Genetic Analysis of Saccharomyces cerevisiae H2A Serine 129 Mutant Suggests a Functional Relationship between H2A and the Sister-Chromatid Cohesion Partners Csm3-Tof1 for the Repair of Topoisomerase I-Induced DNA Damage. Genetics, 172, 67-76. http://dx.doi.org/10.1534/genetics.105.046128
|
[30]
|
Lisby, M., Rothstein, R. and Mortensen, U.H. (2001) Rad52 Forms DNA Repair and Recombination Centers during S Phase. Proceedings of the National Academy of Sciences of the United States of America, 98, 8276-8282. http://dx.doi.org/10.1073/pnas.121006298
|
[31]
|
Takahashi, A. and Ohnishi, T. (2005) Does γH2AX Foci Formation Depend on the Presence of DNA Double Strand Breaks? Cancer Letters, 229, 171-179. http://dx.doi.org/10.1016/j.canlet.2005.07.016
|
[32]
|
Nakamura, T.M., Du, L.-L., Redon, C. and Russell, P. (2004) Histone H2A Phosphorylation Controls Crb2 Recruitment at DNA Breaks, Maintains Checkpoint Arrest, and Influences DNA Repair in Fission Yeast. Molecular and Cellular Biology, 24, 6215-6230. http://dx.doi.org/10.1128/MCB.24.14.6215-6230.2004
|