[1]
|
Hanawa, T. (2010) Metals for Medicine. Japan Institute of Metals, Sendai.
|
[2]
|
N. Nomura, Y. Tanaka, Suyalatu, R. Kondo, H. Doi, Y. Tsutsumi, T. Hanawa, (2009) Effects of Phase Constitution of Zr-Nb Alloys on their Magnetic Susceptibilities. Material Transactions, 50, 2466-2472.
|
[3]
|
Kondo, R., Nomura, N., Suyalatu, Tsutsumi, Y., Doi, H. and Hanawa, T. (2011) Microstructure and Mechanical Properties of As-Cast Zr-Nb Alloys. Acta Biomaterialia, 7, 4278-4284. http://dx.doi.org/10.1016/j.actbio.2011.07.020
|
[4]
|
Eisenbart, E., Velten, D., Muller, M., Thull, R. and Breme, J. (2004) Biocompatibility of B-Stabilizing Elements of Titanium Alloys. Biomaterials, 25, 5705-5713. http://dx.doi.org/10.1016/j.biomaterials.2004.01.021
|
[5]
|
Yamamoto, A., Honma, R. and Sumita, M. (1998) Cytotoxicity Evaluation of 43 Metal Salts using Murine Fibroblasts and Osteoblastic Cells. Journal of Biomedical Materials Research, 39, 331-340. http://dx.doi.org/10.1002/(SICI)1097-4636(199802)39:2<331::AID-JBM22>3.0.CO;2-E
|
[6]
|
Le Guehennec, L., Soueidan, A., Layrolle, P. and Amouriq, Y. (2007) Surface Treatments of Titanium Dental Implants for Rapid Osseointegration. Dental Materials, 23, 844-854. http://dx.doi.org/10.1016/j.dental.2006.06.025
|
[7]
|
Kilpadi, K.L., Chang P.L. and Bellis, S.L. (2001) Hydroxyapatite Binds More Serum Proteins, Purified Integrins, and Osteoblast Precursor Cells than Titanium or Steel. Journal of Biomedical Material Research Part A, 57, 258-267. http://dx.doi.org/10.1002/1097-4636(200111)57:2<258::AID-JBM1166>3.0.CO;2-R
|
[8]
|
Rupp, F., Scheideler, L., Olshanska, N., de Wild, M., Wieland, M. and Geis-Gerstorfer, J. (2006) Enhancing Surface Free Energy and Hydrophilicity through Chemical Modification of Microstructured Titanium Implant Surfaces. Journal of Biomedical Material Research Part A, 76A, 323-334. http://dx.doi.org/10.1002/jbm.a.30518
|
[9]
|
Das, K., Bose, S. and Bandyopadhyay, A. (2007) Surface Modifications and Cell-Materials Interactions with Anodized Ti. Acta Biomaterialia, 3, 573-585. http://dx.doi.org/10.1016/j.actbio.2006.12.003
|
[10]
|
Bigerelle, M., Anselme, K., Noel, B., Ruderman, I., Hardouin, P. and Iost, A. (2002) Improvement in the Morphology of Ti-Based Surfaces: A New Process to Increase in Vitro Human Osteoblast Response. Biomaterials, 23, 1563-1577. http://dx.doi.org/10.1016/s0142-9612(01)00271-x
|
[11]
|
Zuldesmi, M., Waki, A., Kuroda, K. and Okido, M. (2013) High Osteoconductive Surface of Pure Titanium by Hydrothermal Treatment. Journal of Biomaterials and Nanobiotechnology, 4, 284-290. http://dx.doi.org/10.4236/jbnb.2013.43036
|
[12]
|
Zuldesmi, M., Waki, A., Kuroda, K. and Okido, M. (2014) Enhancement of Valve Metal Osteoconductivity by One-Step Hydrothermal Treatment. Material Science and Engineering C, 42, 405-411. http://dx.doi.org/10.4236/jbnb.2013.43036
|
[13]
|
Kuroda, K., Nakamoto, S., Miyashita, Y., Ichino, R. and Okido, M. (2006) Osteoconductivity of HAp Films with Different Surface Morphologies Coated by the Thermal Substrate Method in Aqueous Solutions. Materials Transactions, 47, 1391-1394. http://dx.doi.org/10.2320/matertrans.47.1391
|
[14]
|
Yamamoto, D., Kawai, I., Kuroda, K., Ichino, R., Okido, M. and Seki, A. (2011) Osteoconductivity of Anodized Titanium with Controlled Micron-Level Surface Roughness. Material Transactions, 52, 1650-1654. http://dx.doi.org/10.2320/matertrans.M2011049
|
[15]
|
Habazaki, H., Uozumi, M., Konno, H., Shimizu, K., Skeldon, P. and Thompson, G.E. (2003) Crystallization of Anodic Titania on Titanium and Its Alloys. Corrosion Science, 45, 2063-2073. http://dx.doi.org/10.1016/S0010-938X(03)00040-4
|
[16]
|
Park, J.W., Jang, J.H., Lee, C.S. and Hanawa, T. (2009) Osteoconductivity of Hydrophilic Microstructured Titanium Implants with Phosphate Ion Chemistry. Acta Biomaterialia, 5, 2311-2321. http://dx.doi.org/10.1016/j.actbio.2009.02.026
|
[17]
|
Yamamoto, D., Arii, K., Kuroda, K., Ichino, R., Okido, M. and Seki, A. (2013) Osteoconductivity of Superhydrophilic Anodized TiO2 Coatings on Ti Treated with Hydrothermal Process. Journal of Biomaterials and Nanobiotechnology, 4, 45-52. http://dx.doi.org/10.4236/jbnb.2013.41007
|
[18]
|
Baier, R.E., Meyer, A.E., Natiella, J.R. and Carter, J.M. (1984) Surface Properties Determine Bioadhesive Outcomes: Methods and Results. Journal Biomedical Material Research, 18, 337-355. http://dx.doi.org/10.1002/jbm.820180404
|
[19]
|
Vezeau, P., Keller, J. and Wightman, J. (2000) Reuse of Healing Abutments: An in Vitro Model of Plasma Cleaning and Common Sterilization Techniques. Implant Dentistry, 9, 236-246. http://dx.doi.org/10.1097/00008505-200009030-00009
|
[20]
|
Yamamoto, D., Kuroda, K., Ichino, R. and Okido, M. (2012) Anodic Oxide Coatings on Ti Alloys and Their Osteoconductivity. Material Science Forum, 706-709, 612-616. http://dx.doi.org/10.4028/www.scientific.net/MSF.706-709.612
|
[21]
|
Yamamoto, D., Iida, T., Arii, K., Kuroda, K., Ichino, R., Okido, M. and Seki, A. (2012) Surface Hydrophilicity and Osteoconductivity of Anodized Ti in Aqueous Solutions with Various Solute Ions. Material Transactions, 53, 1956- 1961. http://dx.doi.org/10.2320/matertrans.M2012082
|
[22]
|
Schneider, G. and Burridge, K. (1994) Formation of Focal Adhesions by Osteoblasts Adhering to Different Substrata. Experimental Cell Research, 214, 264-269. http://dx.doi.org/10.1006/excr.1994.1257
|
[23]
|
Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer, A.J. and Cochran, D.L. (2004) Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface. Journal of Dental Research, 83, 529-533. http://dx.doi.org/10.1177/154405910408300704
|
[24]
|
Eriksson, C., Nygren, H. and Ohlson, K. (2004) Implantation of Hydrophilic and Hydrophobic Titanium Discs in Rat Tibia: Cellular Reactions on the Surfaces during the First 3 Weeks in Bone. Biomaterials, 25, 4759-4766. http://dx.doi.org/10.1016/j.biomaterials.2003.12.006
|
[25]
|
Zhao, G., Schwartz, Z., Wieland, M., Rupp, F., Geis-Gerstorfer, J., Cochran, D.L. and Boyan, B.D. (2005) High Surface Energy Enhances Cell Response to Titanium Substrate Microstructure. Journal of Biomedical Materials Research A, 74, 49-58. http://dx.doi.org/10.1002/jbm.a.30320
|
[26]
|
Yamamoto, H., Shibata, Y. and Miyazaki, T. (2005) Anode Glow Discharge Plasma Treatment of Titanium Plates Facilitates Adsorption of Extracellular Matrix Proteins to the Plates. Journal of Dental Research, 84, 668-671. http://dx.doi.org/10.1177/154405910508400717
|
[27]
|
Shibata, Y., Hosaka, M., Kawai, H. and Miyazaki, T. (2002) Glow Discharge Plasma Treatment to Titanium Plates Enhances Adhesion of Osteoblast-Like Cells to the Plates through the Integrin-Mediated Mechanism. The International Journal of Oral Maxillofac Implants, 17, 771-777.
|