Six-State Symmetric Quantum Key Distribution Protocol

Abstract

We propose and demonstrate an optical implementation of a quantum key distribution protocol, which uses three-non-orthogonal states and six states in total. The proposed scheme improves the protocol that is proposed by Phoenix, Barnett and Chefles [J. Mod. Opt. 47, 507 (2000)]. An additional feature, which we introduce in our scheme, is that we add another detection set; where each detection set has three non-orthogonal states. The inclusion of an additional detection set leads to improved symmetry, increased eavesdropper detection and higher security margin for our protocol.

Share and Cite:

Senekane, M. , Mafu, M. and Petruccione, F. (2015) Six-State Symmetric Quantum Key Distribution Protocol. Journal of Quantum Information Science, 5, 33-40. doi: 10.4236/jqis.2015.52005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Scarani, V., Bechmann-Pasquinucci, H., Cerf, N., Dusek, M., Lutkenhaus, N. and Peev, M. (2009) The Security of Practical Quantum Key Distribution. Reviews of Modern Physics, 81, 1301-1350.
http://dx.doi.org/10.1103/RevModPhys.81.1301
[2] Gisin, N., Ribordy, G., Tittel, W. and Zbinden, H. (2002) Quantum Cryptography. Reviews of Modern Physics, 74, 145.
http://dx.doi.org/10.1103/RevModPhys.74.145
[3] Ekert, A. (1991) PRL Milestone. Physical Review Letters, 67, 661-663.
http://dx.doi.org/10.1103/PhysRevLett.67.661
[4] Bennett, C.H. (1992) Quantum Cryptography Using Any Two Nonorthogonal States. Physical Review Letters, 68, 3121-3124.
http://dx.doi.org/10.1103/PhysRevLett.68.3121
[5] Bruß, D. (1998) Optimal Eavesdropping in Quantum Cryptography with Six States. Physical Review Letters, 81, 3018-3021.
http://dx.doi.org/10.1103/PhysRevLett.81.3018
[6] Scarani, V., Acn, A., Ribordy, G. and Gisin, N. (2004) Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. Physical Review Letters, 92, Article ID: 057901.
http://dx.doi.org/10.1103/PhysRevLett.92.057901
[7] Inoue, K., Waks, E. and Yamamoto, Y. (2002) Differential Phase Shift Quantum Key Distribution. Physical Review Letters, 89, Article ID: 037902.
http://dx.doi.org/10.1103/PhysRevLett.89.037902
[8] Stucki, D., Fasel, S., Gisin, N., Thoma, Y. and Zbinden, H. (2007) Coherent One-Way Quantum Key Distribution. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6583, 18.
[9] Phoenix, S.J., Barnett, S.M. and Chefles, A. (2000) Three-State Quantum Cryptography. Journal of Modern Optics, 47, 507-516.
http://dx.doi.org/10.1080/09500340008244056
[10] Cover, T.M. and Thomas, J. A. (1991) Elements of Information Theory. John Willey, New York.
http://dx.doi.org/10.1002/0471200611
[11] Christandl, M., Konig, R. and Renner, R. (2009) Postselection Technique for Quantum Channels with Applications to Quantum Cryptography. Physical Review Letters, 102, Article ID: 020504.
http://dx.doi.org/10.1103/PhysRevLett.102.020504
[12] Mafu, M., Garapo, K. and Petruccione, F. (2014) Finite-Key-Size Security of the Phoenix-Barnett-Chefles 2000 Quantum-Key-Distribution Protocol. Physical Review A, 90, Article ID: 032308.
http://dx.doi.org/10.1103/PhysRevA.90.032308

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.