Rhombic Analysis Extension of a Plant-Surface Water Interaction-Diffusion Model for Hexagonal Pattern Formation in an Arid Flat Environment

Abstract

An existing weakly nonlinear diffusive instability hexagonal planform analysis for an interaction-diffusion plant-surface water model system in an arid flat environment [11] is extended by performing a rhombic planform analysis as well. In addition a threshold-dependent paradigm that differs from the usually employed implicit zero-threshold methodology is introduced to interpret stable rhombic patterns. The results of that analysis are synthesized with those of the existing hexagonal planform analysis. In particular these synthesized results can be represented by closed-form plots in the rate of precipitation versus the specific rate of plant density loss parameter space. From those plots, regions corresponding to bare ground and vegetative Turing patterns consisting of tiger bush (parallel stripes and labyrinthine mazes), pearled bush (hexagonal gaps and rhombic pseudo-gaps), and homogeneous distributions of vegetation, respectively, may be identified in this parameter space. Then that predicted sequence of stable states along a rainfall gradient is both compared with observational evidence and used to motivate an aridity classification scheme. Finally this system is shown to be isomorphic to the chemical reaction-diffusion Gray-Scott model and that isomorphism is employed to draw some conclusions about sideband instabilities as applied to vegetative patterning.

Share and Cite:

Kealy-Dichone, B. , Wollkind, D. and Cangelosi, R. (2015) Rhombic Analysis Extension of a Plant-Surface Water Interaction-Diffusion Model for Hexagonal Pattern Formation in an Arid Flat Environment. American Journal of Plant Sciences, 6, 1256-1277. doi: 10.4236/ajps.2015.68128.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Couteron, P., Mahamane, A., Ouedraogo, P. and Seghieri, J. (2000) Differences between Banded Thickets (Tiger Bush) in Two Sites in West Africa. Journal of Vegetation Sciences, 11, 321-328.
http://dx.doi.org/10.2307/3236624
[2] Kealy, B.J. and Wollkind, D.J. (2012) A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction-Diffusion Plant-Surface Water Model System in an Arid Flat Environment. Bulletin of Mathematical Biology, 74, 803-833.
http://dx.doi.org/10.1007/s11538-011-9688-7
[3] Klausmeier, C.A. (1999) Regular and Irregular Patterns in Semiarid Vegetation. Science, 284, 1826-1828.
http://dx.doi.org/10.1126/science.284.5421.1826
[4] Turing, A.M. (1952) The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37-72.
http://dx.doi.org/10.1098/rstb.1952.0012
[5] Rietkerk, M., Boerlijst, M.C., van Langevelde, F., HilleRisLambers, R., van de Koppel, J., Kumar, L., Prins, H.H.T. and de Roos, A.M. (2002) Self-Organization of Vegetation in Arid Ecosystems. The American Naturalist, 160, 524-530.
http://dx.doi.org/10.1086/342078
[6] Lefever, R. and Lejeune, O. (1997) On the Origin of Tiger Bush. Bulletin of Mathematical Biology, 59, 263-294.
http://dx.doi.org/10.1007/BF02462004
[7] Wollkind, D.J. and Stephenson, L.E. (2000) Chemical Turing Pattern Formation Analyses: Comparison of Theory with Experiment. SIAM Journal of Applied Mathematics, 61, 387-431.
http://dx.doi.org/10.1137/S0036139997326211
[8] Boonkorkuea, N., Lenbury, Y., Alvarado, F.J. and Wollkind, D.J. (2010) Nonlinear Stability Analyses of Vegetative Pattern Formation in an Arid Environment. Journal of Biological Dynamics, 4, 346-380.
http://dx.doi.org/10.1080/17513750903301954
[9] Cangelosi, R.A., Wollkind, D.J., Kealy-Dichone, B.J. and Chaiya, I. (2014) Nonlinear Turing Patterns for a Mussel-Algae Model. Journal of Mathematical Biology, 70, 1249-1294.
http://dx.doi.org/10.1007/s00285-014-0794-7
[10] Lejeune, O., Tildi, M. and Lefever, R. (2004) Vegetation Spots and Stripes in Arid Landscapes. International Journal of Quantum Chemistry, 98, 261-271.
http://dx.doi.org/10.1002/qua.10878
[11] Wollkind, D.J. (2001) Rhombic and Hexagonal Weakly Nonlinear Stability Analyses: Theory and Applications. In: Debnath, L., Ed., Nonlinear Stability Analysis, Vol. II, WIT Press, Southampton, 221-272.
[12] Wollkind, D.J., Manoranjan, V.S. and Zhang, L. (1994) Weakly Nonlinear Stability Analyses of Reaction-Diffusion Model Equations. Society for Industrial and Applied Mathematics, 36, 176-214.
http://dx.doi.org/10.1137/1036052
[13] Geddes, J.B., Indik, R.A., Moloney, J.V. and Firth, W.J. (1994) Hexagons and Squares in a Passive Nonlinear Optical System. Physical Review A, 50, 3471-3485.
http://dx.doi.org/10.1103/PhysRevA.50.3471
[14] Cross, M.C. and Hohenberg, P.C. (1993) Pattern Formation outside of Equilibrium. Reviews of Modern Physics, 65, 851-1112.
http://dx.doi.org/10.1103/RevModPhys.65.851
[15] Sekimura, T., Zhu, M., Cook, J., Maini, P.K. and Murray, J.D. (1999) Pattern Formation of Scale Cells in Lepidoptera by Differential Origin-Dependent Cell Adhesion. Bulletin of Mathematical Biology, 61, 807-827.
http://dx.doi.org/10.1006/bulm.1998.0062
[16] Golovin, A.A., Nepomnyashchy, A.A. and Pismen, L.M. (1995) Pattern Formation in Large-Scale Marangoni Convection with Deformable Interface. Physica D: Nonlinear Phenomena, 81, 117-147.
http://dx.doi.org/10.1016/0167-2789(94)00184-R
[17] Schatz, M.F., VanHook, S.J., McCormick, W.D., Swift, J.B. and Swinney, H.L. (1999) Time-Independent Square Patterns in Surface-Tension-Driven Bénard Convection. Physics of Fluids, 11, 2577-2582.
http://dx.doi.org/10.1063/1.870120
[18] von Hardenberg, J., Meron, E., Shachak, M. and Zarmi, Y. (2001) Diversity of Vegetation Patterns and Desertification. Physical Review Letters, 87, Article ID: 198101.
http://dx.doi.org/10.1103/PhysRevLett.87.198101
[19] Rietkerk, M., Dekker, S.C., de Ruiter, P.C. and van de Koppel, J. (2004) Self-Organized Patchiness and Catastrophic Shift in Ecosystems. Science, 305, 1926-1929.
http://dx.doi.org/10.1126/science.1101867
[20] Sherratt, J.A. (2005) An Analysis of Vegetative Stripe Formation in Semi-Arid Landscapes. Journal of Mathematical Biology, 51, 183-197.
http://dx.doi.org/10.1007/s00285-005-0319-5
[21] Sherratt, J.A. and Lord, G.J. (2007) Nonlinear Dynamics and Pattern Bifurcations in a Model for Vegetation Stripes in Semi-Arid Environments. Theoretical Population Biology, 71, 1-11.
http://dx.doi.org/10.1016/j.tpb.2006.07.009
[22] Deblauwe, V., Couteron, P., Lejeune, O., Bogaert, J. and Barbier, N. (2011) Environmental Modulation of Self-Orga nized Periodic Vegetative Patterns in Sudan. Ecography, 34, 990-1001.
http://dx.doi.org/10.1111/j.1600-0587.2010.06694.x
[23] van der Stelt, S., Doelman, A., Hek, G. and Rademacher, J.D.M. (2013) Rise and Fall of Periodic Patterns for a Generalized Klausmeier-Gray-Scott Model. Journal of Nonlinear Science, 23, 39-95.
http://dx.doi.org/10.1007/s00332-012-9139-0
[24] Ursino, N. (2005) The Influence of Soil Properties on the Formation of Unstable Vegetation Patterns on Hillsides of Semiarid Catchments. Advanced Water Resources, 28, 956-963.
http://dx.doi.org/10.1016/j.advwatres.2005.02.009
[25] Morgan, D.S., Doelman, A. and Kaper, T.J. (2000) Stationary Periodic Patterns in the 1D Gray-Scott Model. Methods of Applied Analysis, 7, 105-115.
[26] Pearson, J.E. (1993) Complex Patterns in a Simple System. Science, 261, 189-192.
http://dx.doi.org/10.1126/science.261.5118.189
[27] Segel, L.A. (1965) The Nonlinear Interaction of a Finite Number of Disturbances to a Fluid Layer Heated from Below. Journal of Fluid Mechanics, 21, 359-384.
http://dx.doi.org/10.1017/S002211206500023X
[28] Chen, W. and Ward, M.J. (2011) The Stability and Dynamics of Localized Spot Patterns in the Two-Dimensional Gray-Scott Model. SIAM Journal of Dynamical Systems, 10, 586-666.
http://dx.doi.org/10.1137/09077357x
[29] Meron, E., Gilad, E., von Hardenberg, J., Shachuk, M. and Zarmi, Y. (2004) Vegetation Patterns along a Rainfall Gradient. Chaos, Solitons, and Fractals, 19, 367-376.
http://dx.doi.org/10.1016/S0960-0779(03)00049-3
[30] Golovin, A.A., Matkowsky, B.J. and Volpert, V.A. (2008) Turing Pattern Formation in the Brusselator Model with Superdiffusion. SIAM Journal of Applied Mathematics, 69, 251-272.
http://dx.doi.org/10.1137/070703454
[31] Graham, M.D., Kevrekidis, J.G., Asakura, K., Lauterbach, J., Krishner, K., Rotermund, H.-H. and Ertl, G. (1994) Effects of Boundaries on Pattern Formation: Catalytic Oxidation of CO on Platinum. Science, 264, 80-82.
http://dx.doi.org/10.1126/science.264.5155.80

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.