downloadurl = window.location.href; // var args = "PaperID=" + item + "&RefererUrl=" + refererrurl + "&DownloadUrl="+downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // //// window.setTimeout("show('" + url + "')", 500); // } // function pdfdownloadjudge() { // $("a").each(function(index) { // var rel = $(this).attr("rel"); // if (rel == "true") { // $(this).removeAttr("onclick"); // $(this).attr("href","#"); // //$(this).bind('click', function() { SetNumTwo(56535)}); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + 56535 + "&RefererUrl=" + refererrurl + "&DownloadUrl=" + downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // // $(this).bind('click', function() { ShowTwo(url)}); // } // }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
OJS> Vol.5 No.4, June 2015
Share This Article:
Cite This Paper >>

Evaluation of Third-Order Method for the Tests of Variance Component in Linear Mixed Models

Abstract Full-Text HTML XML Download Download as PDF (Size:2496KB) PP. 233-244
DOI: 10.4236/ojs.2015.54025    3,197 Downloads   3,646 Views   Citations
Author(s)    Leave a comment
Yanyan Wu1, Augustine Wong2, Georges Monette2, Laurent Briollais3

Affiliation(s)

1Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
2Department of Mathematics and Statistics, York University, Toronto, ON, Canada.
3Lunenfeld-Taunenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.

ABSTRACT

Mixed models provide a wide range of applications including hierarchical modeling and longitudinal studies. The tests of variance component in mixed models have long been a methodological challenge because of its boundary conditions. It is well documented in literature that the traditional first-order methods: likelihood ratio statistic, Wald statistic and score statistic, provide an excessively conservative approximation to the null distribution. However, the magnitude of the conservativeness has not been thoroughly explored. In this paper, we propose a likelihood-based third-order method to the mixed models for testing the null hypothesis of zero and non-zero variance component. The proposed method dramatically improved the accuracy of the tests. Extensive simulations were carried out to demonstrate the accuracy of the proposed method in comparison with the standard first-order methods. The results show the conservativeness of the first order methods and the accuracy of the proposed method in approximating the p-values and confidence intervals even when the sample size is small.

KEYWORDS

Family Data, Genetic Variant, Likelihood Ratio Test, Random Effects, Third-Order Method, Variance Component

Cite this paper

Wu, Y. , Wong, A. , Monette, G. and Briollais, L. (2015) Evaluation of Third-Order Method for the Tests of Variance Component in Linear Mixed Models. Open Journal of Statistics, 5, 233-244. doi: 10.4236/ojs.2015.54025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Britton. T. (1997) Tests to Detect Clustering of Infected Individuals within Families. Biometrics, 53, 98-109.
http://dx.doi.org/10.2307/2533100
[2] Liang, K.Y. (1987) A Locally Most Powerful Test for Homogeneity with Many Strata. Biometrics, 51, 259-264.
http://dx.doi.org/10.1093/biomet/74.2.259
[3] Chernoff, H. (1954) On the Distribution of the Likelihood Ratio. Annals of Mathematical Statistics, 25, 573-578.
http://dx.doi.org/10.1214/aoms/1177728725
[4] Self, S.F. and Liang, K.Y. (1987) Asymptotic Properties of Maximum Likelihood Estimator and Likelihood Ratio Tests under Nonstandard Conditions. Journal of the American Statistical Association, 82, 605-610.
http://dx.doi.org/10.1080/01621459.1987.10478472
[5] Stram, D.O. and Lee, J.W. (1994) Variance Components Testing in the Longitudinal Mixed Effects Model. Biometrics, 50, 71171-1177.
http://dx.doi.org/10.2307/2533455
[6] Patterson, H.D. and Thompson, R. (1971) Recovery of Interblock Information When Block Sizes Are Unequal. Biometrika, 58, 545-554.
http://dx.doi.org/10.1093/biomet/58.3.545
[7] Crainiceanu, D.M. and Ruppert, D. (2004) Likelihood Ratio Tests in Linear Mixed Models with One Variance Component. Journal of the Royal Statistical Society: Series B, 66, 165-185.
http://dx.doi.org/10.1111/j.1467-9868.2004.00438.x
[8] Fraser, D.A.S., Reid, N. and Wu. J. (1999) A Simple General Formula for Tail Probabilities for Frequentist and Bayesian Inference. Biometrika, 86, 249-264.
http://dx.doi.org/10.1093/biomet/86.2.249
[9] Barndorff-Nielsen, O.E. (1986) Inference on Full and Partial Parameters, Based on the Standardized Signed Log-Like- lihood Ratio. Biometrika, 73, 307-322.
http://dx.doi.org/10.2307/2336207
[10] Barndorff-Nielsen, O.E. (1991) Modified Signed Log-Likelihood Ratio Statistic. Biometrika, 78, 557-563.
http://dx.doi.org/10.1093/biomet/78.3.557
[11] Fraser, D.A.S. and Reid. M. (1995) Ancillaries and Third-Order Significance. Utilitas Mathematica, 47, 33-53.
[12] Verbeke, G. and Molenberghs, G. (2003) The Use of Score Tests for Inference on Variance Components. Biometrics, 59, 254-262.
http://dx.doi.org/10.1111/1541-0420.00032
[13] Almasy, L., Dyer, T.D., Peralta, J.M., Jun, G., Fuchsberger, C., Almeida, M.A., Kent, J.W., Fowler, S., Duggirala, R. and Blangero. J. (2014) Data for Genetic Analysis Workshop 18: Human Whole Genome Sequence, Blood Pressure, and Simulated Phenotypes in Extended Pedigrees. BMC Proceedings, 8, S2.
[14] Wu, Y.Y. and Briollais, L. (2014) Mixed-Effects Models for Joint Modeling of Sequence Data in Longitudinal Studies. BMC Proceedings, 8, S92.

  
comments powered by Disqus
OJS Subscription
E-Mail Alert
OJS Most popular papers
Publication Ethics & OA Statement
OJS News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.