[1]
|
Zhang, X.D. (2002) Modern Signal Processing. 2nd Edition, Tsinghua University Press, Beijing, 362.
|
[2]
|
Selig, K.K. (2002) Uncertainty Principles Revisited. Electronic Transactions on Numerical Analysis, 14, 165-177.
|
[3]
|
Dembo, A., Cover, T.M. and Thomas, J.A. (2001) Information Theoretic Inequalities. IEEE Transactions on Information Theory, 37, 1501-1508.
|
[4]
|
Loughlin, P.J. and Cohen, L. (2004) The Uncertainty Principle: Global, Local, or Both? IEEE Transac-tions on Signal Processing, 52, 1218-1227.
|
[5]
|
Folland, G.B. and Sitaram, A. (1997) The Uncertainty Principle: A Mathematical Survey. The Journal of Fourier Analysis and Applications, 3, 207-238. http://dx.doi.org/10.1007/BF02649110
|
[6]
|
Tao, R., Deng, B. and Wang, Y. (2009) Theory and Application of the Fractional Fourier Transform. Tsinghua University Press, Beijing.
|
[7]
|
Maassen, H. (1988) A Discrete Entropic Uncertainty Relation. Quantum Probability and Applications, Springer-Verlag, New York, 263-266.
|
[8]
|
Stern, A. (2007) Sampling of Compact Signals in Offset Linear Canonical Transform Domains. Signal, Image and Video Processing, 1, 359-367.
|
[9]
|
Shinde, S. and Vikram, M.G. (2001) An Uncertainty Principle for Real Signals in the Fractional Fourier Transform Domain. IEEE Transactions on Signal Processing, 49, 2545-2548.
|
[10]
|
Mustard, D. (1991) Uncertainty Principle Invariant under Fractional Fourier Transform. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 33, 180-191. http://dx.doi.org/10.1017/S0334270000006986
|
[11]
|
Bialynicki-Birula, I. (1985) Entropic Uncertainty Relations in Quantum Mechanics. In: Accardi, L. and von Waldenfels, W., Eds., Quantum Probability and Applications II, Lecture Notes in Mathematics, Volume 1136, Springer, Berlin 90.
|
[12]
|
Aytür, O. and Ozaktas, H.M. (1995) Non-Orthogonal Domains in Phase Space of Quantum Optics and Their Relation to Fractional Fourier Transforms. Optics Communications, 120, 166-170. http://dx.doi.org/10.1016/0030-4018(95)00452-E
|
[13]
|
Stern, A. (2008) Uncertainty Principles in Linear Canonical Transform Domains and Some of Their Implications in Optics. Journal of the Optical Society of America A, 25, 647-652. http://dx.doi.org/10.1364/JOSAA.25.000647
|
[14]
|
Sharma, K.K. and Joshi, S.D. (2008) Uncertainty Principle for Real Signals in the Linear Canonical Transform Domains. IEEE Transactions on Signal Processing, 56, 2677-2683. http://dx.doi.org/10.1109/TSP.2008.917384
|
[15]
|
Zhao, J., Tao, R., Li, Y.L. and Wang, Y. (2009) Uncertainty Principles for Linear Canonical Transform. IEEE Transactions on Signal Processing, 57, 2856-2858. http://dx.doi.org/10.1109/TSP.2009.2020039
|
[16]
|
Xu, G.L., Wang, X.T. and Xu, X.G. (2009) Three Cases of Uncertainty Principle for Real Signals in Linear Canonical Transform Domain. IET Signal Processing, 3, 85-92. http://dx.doi.org/10.1049/iet-spr:20080019
|
[17]
|
Xu, G.L., Wang, X.T. and Xu, X.G. (2009) New Inequalities and Uncertainty Relations on Linear Canonical Transform Revisit. EURASIP Journal on Advances in Signal Processing, 2009, Article ID: 563265.http://dx.doi.org/10.1155/2009/563265
|
[18]
|
Xu, G.L., Wang, X.T. and Xu, X.G. (2009) Generalized Entropic Uncertainty Principle on Fractional Fourier Transform. Signal Processing, 89, 2692-2697. http://dx.doi.org/10.1016/j.sigpro.2009.05.014
|
[19]
|
Xu, G.L., Wang, X.T. and Xu, X.G. (2009) Uncertainty Inequalities for Linear Canonical Transform. IET Signal Processing, 3, 392-402. http://dx.doi.org/10.1049/iet-spr.2008.0102
|
[20]
|
Xu, G.L., Wang, X.T. and Xu, X.G. (2009) The Logarithmic, Heisenberg’s and Short-Time Uncertainty Principles Associated with Fractional Fourier Transform. Signal Processing, 89, 339-343. http://dx.doi.org/10.1016/j.sigpro.2008.09.002
|
[21]
|
Xu, G.L., Wang, X.T. and Xu, X.G. (2010) On Uncertainty Principle for the Linear Canonical Transform of Complex Signals. IEEE Transactions on Signal Processing, 58, 4916-4918. http://dx.doi.org/10.1109/TSP.2010.2050201
|
[22]
|
Somaraju, R. and Hanlen, L.W. (2006) Uncertainty Principles for Signal Concentrations. Proceedings of the 7th Australian Communications Theory Workshop, Perth, 1-3 February 2006, 38-42. http://dx.doi.org/10.1109/AUSCTW.2006.1625252
|
[23]
|
Donoho, D.L. and Huo, X. (2001) Uncertainty Principles and Ideal Atomic Decomposition. IEEE Transactions on Information Theory, 47, 2845-2862. http://dx.doi.org/10.1109/18.959265
|
[24]
|
Donoho, D.L. and Stark, P.B. (1989) Uncertainty Principles and Signal Recovery. SIAM Journal on Applied Mathematics, 49, 906-930. http://dx.doi.org/10.1137/0149053
|
[25]
|
Elad, M. and Bruckstein, A.M. (2002) A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases. IEEE Transactions on Information Theory, 48, 2558-2567. http://dx.doi.org/10.1109/TIT.2002.801410
|
[26]
|
Xu, G.L., Wang, X.T. and Xu, X.G. (2010) Novel Uncertainty Relations in Fractional Fourier Transform Domain for Real Signals. Chinese Physics B, 19, Article ID: 014203. http://dx.doi.org/10.1088/1674-1056/19/1/014203
|
[27]
|
Pei, S.C., Yeh, M.H. and Luo, T.L. (1999) Fractional Fourier Series Expansion for Finite Signals and Dual Extension to Discrete-Time Fractional Fourier Transform. IEEE Transactions on Circuits and System II: Analog and Digital Signal Processing, 47, 2883-2888.
|
[28]
|
Pei, S.C. and Ding, J.J. (2003) Eigenfunctions of the Offset Fourier, Fractional Fourier, and Linear Canonical Transforms. Journal of the Optical Society of America A, 20, 522-532. http://dx.doi.org/10.1364/JOSAA.20.000522
|
[29]
|
Qi, L., Tao, R., Zhou, S. and Wang, Y. (2004) Detection and Parameter Estimation of Multicomponent LFM Signal Based on the Fractional Fourier Transform. Science in China Series F, 47, 184-198. http://dx.doi.org/10.1360/02yf0456
|