The Conditions for the Convergence of Power Scaled Matrices and Applications

Abstract Full-Text HTML Download Download as PDF (Size:192KB) PP. 63-71
DOI: 10.4236/ajcm.2011.12007    4,153 Downloads   8,455 Views  

ABSTRACT

For an invertible diagonal matrix D , the convergence of the power scaled matrix sequence D-NAN is investigated. As a special case, necessary and sufficient conditions are given for the convergence of D-NTN , where T is triangular. These conditions involve both the spectrum as well as the diagraph of the matrix .The results are then used to privide a new proof for the convergence of subspace iteration.

Cite this paper

X. Chen and R. Hartwig, "The Conditions for the Convergence of Power Scaled Matrices and Applications," American Journal of Computational Mathematics, Vol. 1 No. 2, 2011, pp. 63-71. doi: 10.4236/ajcm.2011.12007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. L. Bauer, “Das Verfahren der Treppeniteration und verwandte Verfahren zur L?sung Algebraischer Eigen- wertprobleme,” Zeitschrift für Angewandte Mathe- matik und Physik, Vol. 8, No. 3, 1957, pp. 214-235. doi:10.1007/BF01600502
[2] A. Ben-Israel, “A Volume Associated with Matrices,” Linear Algebra and Its Applications, Vol. 167, No. 1, pp. 87-111, 1992. doi:10.1016/0024-3795(92)90340-G
[3] X. Chen and R. E. Hartwig, “On Simultaneous Iteration for Computing the Schur Vectors of Matrices,” Pro- ceedings of the 5th SIAM Conference on Applied Linear Algebra, Snowbird, June 13-19, 1994, pp. 290-294.
[4] X. Chen and R. E. Hartwig, “On the Convergence of Power Scaled Cesaro Sums,” Linear Algebra and Its Applications, Vol. 267, pp. 335-358, 1997. doi:10.1016/S0024-3795(97)80056-0
[5] X. Chen and R. E. Hartwig, “The Semi-iterative Method Applied to the Hyperpower Iteration,” Numerical Linear Algebra with Applications, Vol. 12, No. 9, pp. 895-910, 2005. doi:10.1002/nla.429
[6] X. Chen and R. E. Hartwig, “The Picard Iteration and Its Application,” Linear and Multi-linear Algebra, Vol. 54, No. 5, 2006, pp. 329-341. doi:10.1080/03081080500209703
[7] R. A. Horn and C. R. Johnson, “Matrix Analysis,” Cambridge University Press, Cambridge, 1985.
[8] R. A. Horn and C. R. Johnson, “Topics in Matrix Ana- lysis,” Cambridge University Press, Cambridge, 1991.
[9] A. S. Householder, “The Theory of Matrices in Nu- merical Analysis,” Dover, New York, 1964.
[10] B. N. Parlett and W. G. Poole, Jr., “A Geometric Theory for the QR, LU, and Power Iterations,” SIAM Journal on Numerical Analysis, Vol. 10, No. 2, 1973, pp. 389-412. doi:10.1137/0710035
[11] H. Rutishauser, “Simultaneous Iteration Method for Symmetric Matrices,” Numerische Mathe-matik, Vol. 16, No. 3, 1970, pp. 205-223. doi:10.1007/BF02219773
[12] Y. Saad, “Numerical Methods for Large Eigenvalue Problems,” Manchester University Press, Manchester, 1992.
[13] G. W. Stewart, “Methods of Simultaneous Iteration for Calculating Eigenvectors of Matrices” In: John J. H. Miller, Eds., Topics in Numerical Analysis II, Academic Press, New York, 1975, pp. 185-169.
[14] G. R. Wang, Y. Wei and S. Qiao, “Generalized Inverses: Theory and Computations,” Science Press, Beijing/New York, 2004.
[15] D. S. Watkins, “Understanding the QR Algorithm,” SIAM Review, Vol. 24, No. 4, 1982, pp. 427-440. doi:10.1137/1024100
[16] D. S. Watkins, “Some Perspectives on the Eigenvalue Problem,” SIAM Review, Vol. 35, No. 3, 1993, pp. 430-470, doi:10.1137/1035090
[17] J. H. Wilkinson, “The Algebraic Eigenvalue Problem,” Oxford University Press (Clarendon), London and New York, 1964.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.