A New Theoretical Technique for the Measurement of High-Frequency Relic Gravitational Waves

Abstract

Under most models of the early universe evolution, high-frequency gravitational waves (HFGWs) were produced. They are referred to as “relic” high-frequency gravitational waves or HFRGWs and their detection and measurement could provide important information on the origin and development of our Universe – information that could not otherwise be obtained. So far three instruments have been built to detect and measure HFRGWs, but so far none of them has achieved the required sensitivity. This paper concerns another detector, originally proposed by Baker in 2000 and patented, which is based upon a recently discovered physical effect (the Li effect); this detector has accordingly been named the “Li-Baker detector.” The detector has been a joint development effort by the P. R. China and the United States HFGW research teams. A rigorous examination of the detector’s performance is important in the ongoing debate over the value of attempting to construct a Li-Baker detector and, in particular, an accurate prediction of its sensitivity in the presence of significant noise will decide whether the Li-Baker detector will be capable of detecting and measuring HFRGWs. The potential for useful HFRGW measurement is theoretically confirmed.

Share and Cite:

R. Woods, R. Baker, F. Li, G. Stephenson, E. Davis and A. Beckwith, "A New Theoretical Technique for the Measurement of High-Frequency Relic Gravitational Waves," Journal of Modern Physics, Vol. 2 No. 6, 2011, pp. 498-518. doi: 10.4236/jmp.2011.26060.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. M. Cruise, Class. Quantum Grav. 17, 2525-2530 (2000).
[2] A. M .Cruise et al., Class. Quantum Grav. 22, 5479-5481 (2005).
[3] P. Bernard P, et al., Review of Scientific Instruments 72, 5 2428-2437 (2001).
[4] A. Chincarini et al., paper HFGW-03-103, High-Frequency Gravitational-Wave Conference, The MITRE Corporation (2003).
[5] R. Ballantini R, et al., INFN Technical Note INFN/TC-05/05, gr-qc/0502054 (2005).
[6] A. Nishizawa A, et al., Phys. Rev. D 77 ‘Issue 2, 022002 (2008).
[7] R. M L Baker Jr., 2007 Peoples Republic of China Patent Number 0510055882.2, Gravitational Wave Generator, Detector Portion, [http://www.drrobertbaker.com/docs/Chinese%20Detector%20Patent.pdf]
[8] F. Y. Li, Acta Physica Sinica 41, 1919-1928 (1992).
[9] F Y Li et al. Eur. Phys. J. C 56, 407-423 (2008) [http://www.gravwave.com/docs/Li-Baker%206-22-08.pdf]
[10] B. P. Abbott, et al., Nature 460, 991 (2009).
[11] M. Krauss, Science 328, 989-992 (2010).
[12] Mensky M. B., Problems of the theory of gravity and elementary particles Issue 6 ed .K P Stanyukovich (Moscow, Atomizdat), 181-190 (1975).
[13] M. B.,Mensky et al., Gravitation and Cosmology 1, 167-170 (2009).
[14] A. Einstein A, Die Feldgleichungen der gravitation Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin., 844-847 (1915) http://nausikaa2.mpiwg-berlin.mpg.de/cgi bin/toc/toc.x.cgi?dir=6E3MAXK4&step=thumb
[15] R. Brustein et al., Phys. Lett. B. 361, 45 (1995).
[16] A. Buonanno et al., Phys. Rev. D. 55, 03330 (1997).
[17] H. J. de Vega et al., Phys. Rev. D. 60, 04407 (1999).
[18] M. Giovannini, Phys. Rev. D. 60 01235 (1999).
[19] L. P. Grishchuk, 34th Rencontres de Moriond: Gravitational Waves and Experimental Gravity (1999).
[20] A. W. Beckwith, Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF) American Institute of Physics Conference Proceedings 1103 ed. G. Robertson (Melville, NY), 571 (2009).
[21] M. P. Infante et al., Phys Rev D 61, 083515 (2000).
[22] H. J, Mosquera-Cuesta et al., Phys. Lett. B 500, 215-221 (2001).
[23] G. S. Bisnovatyi-Kogan et al., Class. Quantum Grav. 21, 3347-3359 (2004).
[24] P. S. Shawhan, American Scientist 92, 4, 350-356 (2004).
[25] A. W. Beckwith, http://vixra.org/abs/1009.0020 (2010).
[26] L. P. Grishchuk, JETP Lett. 23, 293 (1976).
[27] L. P. Grishchuk, Sov. Phys. Usp 20, 319 (1977).
[28] L. P. Grishchuk, Sov. Phys. Usp 31, 940 (1988).
[29] L. P. Grishchuk, arXiv:gr-qc/0504018v4 (2006).
[30] G. Garcia-Cuadrado Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF) American Institute of Physics Conference Proceedings 1103 ed. G Robertson (Melville, NY), 553-563 (2009) [http://www.gravwave.com/docs/Toward%20a%20New%20Era%20in%20Gravitational%20Wave%20Research.pdf]
[31] D. H. Douglass et al., General relativity: an Einstein centenary survey ed. S. W. Hawking and W. Israel (CUP, UK), 90-137 (1979).
[32] F. Y. Li et al., Phys. Rev. D 62, 044018-1 (2000).
[33] F. Y. Li et al., Intern J of Mod. Phys. D 11(7), 1049-1059 (2002).
[34] F. Y. Li et al., Phys. Rev. D 67, 104008-1 to -17 (2003).
[35] F. Y. Li et al., Chin. Phys. Lett. 20, 11, 1917 (2003).
[36] F. Y. Li et al., Chin. Phys. Lett. 21, 11, 2113 (2004).
[37] F. Y. Li et al., Intern. J. of Mod.Phys. B 21, 18-19, 3274-3278 (2007).
[38] F. Y. Li et al., Chin. Phys. Lett. 26, 5 050402 (2009).
[39] F. Y. Li et al. Phys. Rev. D. 80, 060413-1-14 [arXiv: gr-qc/0909.4118] (2009) [http://www.gravwave.com/docs/Li,%20et%20al.%20PRD%2009-9-09%20.pdf
[40] N. Kolosnitsyn, personal communication, August 15 (2010).
[41] R. M L Baker, Jr. et al., Proceedings of Space Technology and Applications International Forum (STAIF-2008) 969 ed. M. S. El-Genk, American Institute of Physics Conference Proceedings (Melville, N Y), 1045-1054 (2008) [http://www.gravwave.com/docs/Proposed%20Ultra High%20Sensitivity%20HFGW%20Detector%2005-15-08.pdf]
[42] L. P. Grishchuk, 2nd High-Frequency Gravitational Wave Symposium, Austin, Texas September 19 slide #6, (2007) [http://www.gravwave.com/docs/Grishchuk%20%20HFGW%20Lect.pdf]
[43] M. E. Gertsenshtein, Soviet Physics JETP 14, 1 84-85 (1962).
[44] A. Yariv, Quantum Electronics 2nd Ed.., New York: Wiley (1975).
[45] D. Eardley, D JSR-08-506 the JASON defense science advisory panel and prepared for the Office of the Director of National Intelligence (2008) [http://www.fas.org/irp/agency/dod/jason/gravwaves.pdf]
[46] R. M L Baker, Jr. et al., Proceedings of Space Technology and Applications International Forum (STAIF-2008) 813 ed. M. S. El-Genk, American Institute of Physics Conference Proceedings, Melville, N Y1280-1289 (2006).
[47] W. Wen, et al., Phys. Rev. Letters 89, 22 (2002).
[48] L. Zhou L. et al., Phys. Rev. Letters 82, 7 (2003).
[49] K. Yamamoto et al., [arXiv:hep-ph/0101200 v1] (2001).
[50] D. Schuster et al., [arXiv:cond-mat/0608693 v1] (2006).
[51] G. S. Buller et al. Meas. Sci. Technol. 21, 1-28 (2010).
[52] R. W. Boyd, Radiometry and the Detection of Optical Radiation (John Wiley & Sons, NY) 10ff (1983).
[53] R. Nave, R, http://hyperphysics.phy-astr.gsu.edu/hbase/ atmos/blusky.html#c2. [Assessed July 9, 2009] (2009).
[54] W. B. Robb W B, J. Phys. B: At. Mol. Phys 7, L369 (1974).
[55] J. B. Keller, J. Opt. Soc. Am. 32, 2, 116-133 (1962).
[56] C. J. Sheppard et al., J. Opt. Soc. Am A/9, 2 274-281 (1992).
[57] R. C. Woods, Space, Propulsion and Energy Sciences International Forum (SPESIF2011) Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF), American Institute of Physics Conference Proceedings ed. G. Robertson, Melville, NY, (2011) http://www.gravwave.com/docs/Woods%202010.pdf
[58] N. I. Landy et al., Physical Review Letters 100, 207402-1-4 (2008).
[59] R. F. Service, Science 327, 138-139 (2010).
[60] Tobar ME Applications of low-temperature microwave techniques to the measurement of gravity waves and quantum measurement of macroscopic systems Physics B: Condensed Matter 2000 280 520-524.
[61] Boyd R. W 1983 Radiometry and the Detection of Optical Radiation (John Wiley & Sons, NY) pp. 10ff.
[62] M. D. Tsai et al., IEEE microwave and wireless components Letters 15, 327 (2005).
[63] F. Giannini et al., Proceedings of GAAS 2002, 23-27 September Milano. Research Contributions of the Alma Mater Studiorum – University of Bologna. [http://amsacta.cib.unibo.it/149/] (2002)
[64] Tsai M D, Cho Y H and Wang H 2005 A 5-GHz Low Phase Noise Differential Colpitts CMOS VCO IEEE microwave and wireless components Letters 15 327.
[65] M. Planck, The theory of heat radiation 2nd edition (Blackiston Son & Co., Philadelphia) 13, 30, 42 (1914).
[66] Caldeira A O, Legget A J, Physica A: Statistical and Theoretical Physics Volume 121, Issue 3, September 1983, Pages 587-616.
[67] R. M L Baker, Astrodynamics: Applications and Advanced Topics (New York and London: Academic Press), 376-392 (1967).
[68] G. V. Stephenson, Proceedings of the Space, Propulsion and Energy Sciences International Forum (SPESIF) American Institute of Physics Conference Proceedings 1103 ed. G. Robertson (Melville, NY) 542-547 (2009) [http://www.gravwave.com/docs/HFGW%20Detector%20Sensitivity%20Limit.pdf]
[69] Kippenberg T J, Vahala K J 2008 Cavity optomechanics: back-action at the mesoscale Science 321 1172-1176.
[70] Abbott B, et al. 2007 Searching for a stochastic background of gravitational waves with the laser interferometer gravitational wave observatory Astrophys. J. 659 918-930.
[71] Goldsmith P F, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE Press Series on RF and Microwave Technology), 9-68 (1998).
[72] Mata-Mendez O 1991 Diffraction and beam-diameter measurement of Gaussian beams at optical and microwave frequencies Opt. Lett. 16, 1629-1631.
[73] Kong J A, Electromagnetic wave theory, EMW, Cambridge (2000).

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.