[1]
|
Schrand, A., Hens, S.A.C. and Shenderova, O. (2009) Nanodiamond Particles: Properties and Perspectives for Bioapplications. Critical Reviews in Solid State and Materials Sciences, 34, 18-74. http://dx.doi.org/10.1080/10408430902831987
|
[2]
|
Danilenko, V.V. (2004) On the History of the Discovery of Nanodiamond Synthesis. Physics of the Solid State, 46, 595-599. http://dx.doi.org/10.1134/1.1711431
|
[3]
|
Shenderova, O.A. and Hens, S.A.C. (2010) Detonation Nanodiamond Particles Processing, Modification and Bioapplications. In: Ho, D., Ed., Nanodiamonds: Applications in Biology and Nanoscale Medicine, Springer, New York, 79-116. http://dx.doi.org/10.1007/978-1-4419-0531-4_4
|
[4]
|
Ahn, M.R., Kunimasa, K., Ohta, T., Kumazawa, S., Kamihira, M., Kaji, K., Uto, Y., Hori, H., Nagasawa, H. and Nakayama, T. (2007) Suppression of Tumor-Induced Angiogenesis by Brazilian Propolis: Major Component Artepillin C Inhibits in Vitro Tube Formation and Endothelial Cell Proliferation. Cancer Letters, 252, 235-243. http://dx.doi.org/10.1016/j.canlet.2006.12.039
|
[5]
|
Amaral, R.C., Gomes, R.C., Rocha Dos Santos, W.M., Abreu, S.L.R. and Santos, V.R. (2006) Periodontitis Treatment with Brasilian Green Propolis Gel. Pharmacologyonline, 3, 336-341.
|
[6]
|
Bankova, V., Christov, R., Kujumgiev, A., Marcucci, M.C. and Popov, S. (1995) Chemical Composition and Antibacterial Activity of Brazilian Propolis 857. Zeitschrift fur Naturforschung, Section C, Biosciences, 50, 167-172.
|
[7]
|
Bankova, V.S., Christov, R., Popov, S., Marcucci, M.C., Tsvetkova, I. and Kujumgiev, A. (1999) Antibacterial Activity of Essential Oils from Brazilian Propolis. Fitoterapia, 70, 190-193. http://dx.doi.org/10.1016/S0367-326X(98)00045-8
|
[8]
|
Bankova, V., Popova, M. and Trusheva, B. (2007) Plant Origin of Propolis: Latest Developments and Importance for Research and Medicinal Use, In: Marghitas, L.A. and Dezmirean, D., Eds., Apicultura-De la stiinta la agribusiness si apiterapie, Editura Academic Pres, Cluj Napoca, 40-46.
|
[9]
|
Aoi, W., Ho-sogi, S., Niisato, N., Yokoyama, N., Hayata, H., Miyazaki, H., Kusuzaki, K., Fukuda, T., Fukui, M., Nakamura, N. and Marunaka, Y. (2013) Improvement of Insulin Resistance, Blood Pressure and Interstitial pH in Early Developmental Stage of Insulin Resistance in OLETF Rats by Intake of Propolis Extracts. Biochemical and Biophysical Research Communications, 432, 650-653. http://dx.doi.org/10.1016/j.bbrc.2013.02.029
|
[10]
|
Perchyonok, V.T., Reher, V., Zhang, S.M., Basson, N.J. and Grobler, S.R. (2015) Bioinspired-Interpenetrating Network (IPNs) Hydrogel (BIOF-INPs) and TMD in Vitro: Bioadhesion, Drug Release and Build in Free Radical Detection and Defense. Open Journal of Stomatology, 5, 53-61. http://dx.doi.org/10.4236/ojst.2015.53008
|
[11]
|
Perchyonok, V.T., Reher, V., Zhang, S.M., Basson, N.J. and Grobler, S.R. (2015) Bioactive-Functionalized Interpenetrating Network Hydrogel (BIOF-IPN): A Novel Biomaterial Transforming the Mechanism of Bio-Repair, Bio-Adhesion and Therapeutic Capability—An in Vitro Study. Journal of Interdisciplinary Medicine and Dental Science, 3, 1.
|
[12]
|
Perchyonok, V.T., Zhang, S.M., Basson, N.J. and Grobler, S.R. (2014) Evaluation of Tetracycline Containing Chitosan Hydrogels as Potential Dual Action Bio-Active Restorative Materials Capable of Wound Healing: In Vitro Approach. Biointerface Research in Applied Chemistry, 4, 843-849.
|
[13]
|
Perchyonok, V.T., Reher, V., Zhang, S.M., Ward, M. and Grobler, S.R. (2014) Microwave Assisted Prepared Interpenetrating Hydrogels from Guar-Gum: Chitosan IPN and Guar Gum Hydrogels as Novel Functional Materials: Bonding, Antioxidant and Bioactivity. Biointerface Research in Applied Chemistry, 4, 850-856.
|
[14]
|
Perchyonok, V.T., Reher, V., Zhang, S.M., Grobler, S.R. and Basson, N.J. (2014) Evaluation of Nystatin Containing Chitosan Hydrogels as Potential Dual Action Bio-Active Restorative Materials: In Vitro Approach. Journal of Functional Materials, 5, 259-272. http://dx.doi.org/10.3390/jfb5040259
|
[15]
|
Perchyonok, V.T., Zhang, S.M. and Grobler, S.R. (2014) IPNs from Cyclodextrin: Chitosan Antioxidants: Bonding, Bioadhesion, Antioxidant Capacity and Drug Release. Journal of Functional Materials, 5, 183-196.
|
[16]
|
Hu, Q.L., Li, B.Q., Wang, M. and Shen, J.C. (2004) Preparation and Characterization of Biodegradable Chitosan/Hydroxyapatite Nanocomposite Rods via in Situ Hybridization: A Potential Material as Internal Fixation of Bone Fracture. Biomaterials, 25, 779-785. http://dx.doi.org/10.1016/S0142-9612(03)00582-9
|
[17]
|
Perchyonok, V.T., Reher, V., Zhang, S.M., Grobler, S.R., Oberholzer, T.G. and Ward, M. (2014) Insights and Relative Effect of Aspirin, Naproxen and Ibuprofen Containing Hydrogels: From Design to Performance as a Functional Dual Capacity Restorative Material and Build in Free Radical Defence: In-Vitro Studies. Open Journal of Stomatology, 4, 73-83. http://dx.doi.org/10.4236/ojst.2014.42013
|
[18]
|
Perchyonok, V.T., Zhang, S.M., Basson, N.J., Grobler, S.R., Oberholzer, T.G. and Ward, M. (2014) Insights into Functional Erythromycin/Antioxidant Containing Chitosan Hydrogels as Potential Bio-Active Restorative Materials: Structure, Function and Antimicrobial Activity. Advanced Techniques in Biology and Medicine, 2, 1.
|
[19]
|
Perchyonok, V.T., Zhang, S.M., Grobler, S.R., Oberholzer, T.G. and Ward, M. (2014) Insights into and Relative Effect of Chitosan-Krill Oil, Chitosan-H-Aspirin, Chitosan-H-Krill Oil-Nystatin and Chitosan-H-Krill Oil-Aspirin-Nystatin on Dentin Bond Strength and Functional Drug Delivery Capacity: In-Vitro Studies. European Journal of General Dentistry, 3, 57-65. http://dx.doi.org/10.4103/2278-9626.126214
|
[20]
|
Perchyonok, V.T., Reher, V., Zhang, S.M., Grobler, S.R., Oberholzer, T.G. and Ward, M. (2014) Insights into Functional Tea Infused-Chitosan Hydrogels as Potential Bio-Active Restorative Materials. European Journal of General Dentistry, 3, 22-28. http://dx.doi.org/10.4103/2278-9626.126205
|
[21]
|
Perchyonok, V.T., Reher, V., Zhang, S.M., Oberholzer, T.G., Ward, M. and Grobler, S.R. (2014) Chitosan: Vitamin C Containing Hydrogels as a Prototype Functional Prolonged Pain Management Restorative Material In-Vitro Studies. Open Jounal of Stomatology, 4, 389-401. http://dx.doi.org/10.4236/ojst.2014.48053
|
[22]
|
Perchyonok, V.T., Zhang, S.M., Basson, N.J., Grobler, S., Oberholzer, T.G. and Ward, M. (2013) Insights into Functional Tetracycline/Antioxidant Containing Chitosan Hydrogels as Potential Bio-Active Restorative Materials: Structure, Function and Antimicrobial Activity. Open Journal of Stomatology, 3, 75-82. http://dx.doi.org/10.4236/ojst.2013.31014
|
[23]
|
Perchyonok, V.T., Zhang, S.M. and Oberholzer, T.G. (2013) Protective Effect of Conventional Antioxidant (β-Carotene, Resveratrol and Vitamin E) in Chitosan-Containing Hydrogels against Oxidative Stress and Reversal of DNA Double Stranded Breaks Induced by Common Dental Composites: In-Vitro Model. The Open Nanoscience Journal, 7, 1-7. http://dx.doi.org/10.2174/1874140101307010001
|