Influence of Mg2+, Fe2+ and Zn2+ Cations on 13C-18O Bonds in Precipitated Aragonite, Calcite and Dolomite: An ab Initio Study

Abstract

The influence of metal cations on 13C-18O bonds in carbonates is still under debate. This paper used ab initio method to investigate this kind of influence of Mg2+, Fe2+ and Zn2+ cations on 13C-18O bonds in precipitated aragonite, calcite and dolomite. The polynomials of Δ47 and reduced partition function ratios (RPFRs) for 13/12C, 14/12C and 18/16O of these minerals were given within temperatures ranging from 260 to 1500 K. We found that these cations significantly decreased the Δ47 values at the level of 10-3 - 10-2 per mil, comparing with pure crystals; and that if the Δ47 values were used to reconstruct the temperatures Ts, the deviation of T was about 7.2°C for, for instance, zinc-enriched aragonite, as discussed in our paper. It was suggested that due to such influence, researchers would better use a proper thermometer according to the main impurity metal cations in carbonates. We also found that according to the probability theory, the theoretical value of the influence of phosphoric acid on Δ47 of CO2 degassed from different carbonates was zero.

Share and Cite:

Yuan, J. (2015) Influence of Mg2+, Fe2+ and Zn2+ Cations on 13C-18O Bonds in Precipitated Aragonite, Calcite and Dolomite: An ab Initio Study. Open Journal of Geology, 5, 254-267. doi: 10.4236/ojg.2015.55023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Wang, Z.G., Schauble, E.A. and Eiler, J.M. (2004) Equilibrium Thermodynamics of Multiply Substituted Isotopologues of Molecular Gases. Geochimica et Cosmochimica Acta, 68, 4779-4797.
http://dx.doi.org/10.1016/j.gca.2004.05.039
[2] Eiler, J.M. (2007) “Clumped-Isotope” Geochemistry—The Study of Naturally-Occurring, Multiply-Substituted Isotopologues. Earth and Planetary Science Letters, 262, 309-327.
http://dx.doi.org/10.1016/j.epsl.2007.08.020
[3] Eiler, J.M. and Schauble, E. (2004) 18O13C16O in Earth’s Atmosphere. Geochimica et Cosmochimica Acta, 68, 4767-4777. http://dx.doi.org/10.1016/j.gca.2004.05.035
[4] Schauble, E.A., Ghosh, P. and Eiler, J.M. (2006) Preferential Formation of 13C-18O Bonds in Carbonate Minerals, Estimated Using First-Principles Lattice Dynamics. Geochimica et Cosmochimica Acta, 70, 2510-2529. http://dx.doi.org/10.1016/j.gca.2006.02.011
[5] Guo, W.F., Mosenfelder, J.L., Goddard, W.A. and Eiler, J.M. (2009) Isotopic Fractionations Associated with Phosphoric Acid Digestion of Carbonate Minerals: Insights from First-Principles Theoretical Modeling and Clumped Isotope Measurements. Geochimica et Cosmochimica Acta, 73, 7203-7225. http://dx.doi.org/10.1016/j.gca.2009.05.071
[6] Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W.F., Schauble, E.A., et al. (2006) 13C-18O Bonds in Carbonate Minerals: A New Kind of Paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439-1456. http://dx.doi.org/10.1016/j.gca.2005.11.014
[7] Hill, P.S., Tripati, A.K. and Schauble, E.A. (2014) Theoretical Constraints on the Effects of pH, Salinity, and Temperature on Clumped Isotope Signatures of Dissolved Inorganic Carbon Species and Precipitating Carbonate Minerals. Geochimica et Cosmochimica Acta, 125, 610-652.
http://dx.doi.org/10.1016/j.gca.2013.06.018
[8] Dennis, K.J. and Schrag, D.P. (2010) Clumped Isotope Thermometry of Carbonatites as an Indicator of Diagenetic Alteration. Geochimica et Cosmochimica Acta, 74, 4110-4122.
http://dx.doi.org/10.1016/j.gca.2013.06.018
[9] Ghosh, P., Eiler, J., Campana, S.E. and Feeney, R.F. (2007) Calibration of the Carbonate “Clumped Isotope” Paleothermometer for Otoliths. Geochimica et Cosmochimica Acta, 71, 2736-2744.
http://dx.doi.org/10.1016/j.gca.2007.03.015
[10] Yuan, J., Zhang, Z. and Zhang, Y. (2014) 13C-18O Bonds in Precipitated Calcite and Aragonite: An ab Initio Study. Open Journal of Geology, 4, 436-480. http://dx.doi.org/10.4236/ojg.2014.49034
[11] Schauble, E.A. and Eiler, J.M. (2004) Theoretical Estimates of Equilibrium 13C-18O Clumping in Carbonates and Organic Acids. Eos, Transactions American Geophysical Union, 85, 11A-0552.
[12] Watson, E.B. (1996) Surface Enrichment and Trace-Element Uptake during Crystal Growth. Geochimica et Cosmochimica Acta, 60, 5013-5020. http://dx.doi.org/10.1016/S0016-7037(96)00299-2
[13] Watson, E.B. (2004) A Conceptual Model for Near-Surface Kinetic Controls on the Trace-Element and Stable Isotope Composition of Abiogenic Calcite Crystals. Geochimica et Cosmochimica Acta, 68, 1473-1488. http://dx.doi.org/10.1016/j.gca.2003.10.003
[14] Watson, E.B. and Liang, Y. (1995) A Simple Model for Sector Zoning in Slowly Grown Crystals: Implications for Growth Rate and Lattice Diffusion, with Emphasis on Accessory Minerals in Crustal Rocks. American Mineralogist, 80, 1179-1187.
[15] DePaolo, D.J. (2011) Surface Kinetic Model for Isotopic and Trace Element Fractionation during Precipitation of Calcite from Aqueous Solutions. Geochimica et Cosmochimica Acta, 75, 1039-1056. http://dx.doi.org/10.1016/j.gca.2010.11.020
[16] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2009) Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford.
[17] Rustad, J.R., Nelmes, S.L., Jackson, V.E. and Dixon, D.A. (2008) Quantum-Chemical Calculations of Carbon-Isotope Fractionation in CO2(g), Aqueous Carbonate Species, and Carbonate Minerals. Journal of Physical Chemistry A, 112, 542-555. http://dx.doi.org/10.1021/jp076103m
[18] Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133.
[19] Petersson, G.A. and Allaham, M.A. (1991) A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms. Journal of Chemical Physics, 94, 6081-6090. http://dx.doi.org/10.1063/1.460447
[20] Petersson, G.A., Bennett, A., Tensfeldt, T.G., Allaham, M.A., Shirley, W.A. and Mantzaris, J. (1988) A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements. Journal of Chemical Physics, 89, 2193-2218. http://dx.doi.org/10.1063/1.455064
[21] Urey, H.C. (1947) The Thermodynamic Properties of Isotopic Substances. Journal of the Chemical Society, 562-581. http://dx.doi.org/10.1039/jr9470000562
[22] Bigeleisen, J. and Mayer, M.G. (1947) Calculation of Equilibrium Constants for Isotopic Exchange Reactions. Journal of Chemical Physics, 15, 261-267. http://dx.doi.org/10.1063/1.1746492
[23] Jarosch, D. and Heger, G. (1986) Neutron Diffraction Refinement of the Crystal-Structure of Aragonite. Tschermaks mineralogische und petrographische Mitteilungen, 35, 127-131.
http://dx.doi.org/10.1007/BF01140844
[24] Maslen, E.N., Streltsov, V.A. and Streltsova, N.R. (1993) X-Ray Study of the Electron-Density in Calcite, CaCo3. Acta Crystallographica Section B-Structural Science, 49, 636-641.
http://dx.doi.org/10.1107/S0108768193002575
[25] Steinfink, H. and Sans, F.J. (1959) Refinement of the Crystal Structure of Dolomite. American Mineralogist, 44, 679-682.
[26] Yuan, J. (2014) Reduced Partition Function Ratio in the Frequency Complex Plane: A Mathematical Approach. Open Journal of Geology, 4, 654-664. http://dx.doi.org/10.4236/ojg.2014.412049
[27] Yuan, J. and Liu, Y. (2012) Quantum-Mechanical Equilibrium Isotopic Fractionation Correction to Radiocarbon Dating: A Theory Study. Journal of Radioanalytical and Nuclear Chemistry, 292, 335-338. http://dx.doi.org/10.1007/s10967-011-1563-3
[28] Grauel, A.L., Schmid, T.W., Hu, B., Bergami, C., Capotondi, L., Zhou, L.P., et al. (2013) Calibration and Application of the “Clumped Isotope” Thermometer to Foraminifera for High-Resolution Climate Reconstructions. Geochimica et Cosmochimica Acta, 108, 125-140.
http://dx.doi.org/10.1016/j.gca.2012.12.049
[29] McCrea, J.M. (1950) On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. Journal of Chemical Physics, 18, 849-857. http://dx.doi.org/10.1063/1.1747785
[30] Swart, P.K., Burns, S.J. and Leder, J.J. (1991) Fractionation of the Stable Isotopes of Oxygen and Carbon in Carbon-Dioxide during the Reaction of Calcite with Phosphoric-Acid as a Function of Temperature and Technique. Chemical Geology, 86, 89-96.
[31] Cao, X. and Liu, Y. (2012) Theoretical Estimation of the Equilibrium Distribution of Clumped Isotopes in Nature. Geochimica et Cosmochimica Acta, 77, 292-303.
http://dx.doi.org/10.1016/j.gca.2011.11.021
[32] Wang, J., Qian, Z., Qian, W., Zhuang, Y., He, Y. and Pan, C. (1999) Probability Statistics (Engineering Mathematics). Tongji University, Shanghai, 240-247. (In Chinese)
[33] Cui, L.L. and Wang, X. (2014) Determination of Clumped Isotopes in Carbonate Using Isotope Ratio Mass Spectrometer: Effects of Extraction Potential and Long-Term Stability. International Journal of Mass Spectrometry, 372, 46-50. http://dx.doi.org/10.1016/j.ijms.2014.08.006
[34] Levine, I.N. (1995) Physical Chemistry. 4th Edition, McGraw-Hill, Inc., New York.
[35] Wang, Z.G., Schauble, E.A. and Eiler, J.M. (2004) Equilibrium Thermodynamics of Multiply Substituted Isotopologues of Molecular Gases. Geochimica et Cosmochimica Acta, 68, 4779-4797.
http://dx.doi.org/10.1016/j.gca.2004.05.039
[36] Eiler, J.M. (2007) “Clumped-Isotope” Geochemistry—The Study of Naturally-Occurring, Multiply-Substituted Isotopologues. Earth and Planetary Science Letters, 262, 309-327.
http://dx.doi.org/10.1016/j.epsl.2007.08.020
[37] Eiler, J.M. and Schauble, E. (2004) 18O13C16O in Earth’s Atmosphere. Geochimica et Cosmochimica Acta, 68, 4767-4777. http://dx.doi.org/10.1016/j.gca.2004.05.035
[38] Schauble, E.A., Ghosh, P. and Eiler, J.M. (2006) Preferential Formation of 13C-18O Bonds in Carbonate Minerals, Estimated Using First-Principles Lattice Dynamics. Geochimica et Cosmochimica Acta, 70, 2510-2529. http://dx.doi.org/10.1016/j.gca.2006.02.011
[39] Guo, W.F., Mosenfelder, J.L., Goddard, W.A. and Eiler, J.M. (2009) Isotopic Fractionations Associated with Phosphoric Acid Digestion of Carbonate Minerals: Insights from First-Principles Theoretical Modeling and Clumped Isotope Measurements. Geochimica et Cosmochimica Acta, 73, 7203-7225. http://dx.doi.org/10.1016/j.gca.2009.05.071
[40] Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W.F., Schauble, E.A., et al. (2006) 13C-18O Bonds in Carbonate Minerals: A New Kind of Paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439-1456. http://dx.doi.org/10.1016/j.gca.2005.11.014
[41] Hill, P.S., Tripati, A.K. and Schauble, E.A. (2014) Theoretical Constraints on the Effects of pH, Salinity, and Temperature on Clumped Isotope Signatures of Dissolved Inorganic Carbon Species and Precipitating Carbonate Minerals. Geochimica et Cosmochimica Acta, 125, 610-652.
http://dx.doi.org/10.1016/j.gca.2013.06.018
[42] Dennis, K.J. and Schrag, D.P. (2010) Clumped Isotope Thermometry of Carbonatites as an Indicator of Diagenetic Alteration. Geochimica et Cosmochimica Acta, 74, 4110-4122.
http://dx.doi.org/10.1016/j.gca.2013.06.018
[43] Ghosh, P., Eiler, J., Campana, S.E. and Feeney, R.F. (2007) Calibration of the Carbonate “Clumped Isotope” Paleothermometer for Otoliths. Geochimica et Cosmochimica Acta, 71, 2736-2744. http://dx.doi.org/10.1016/j.gca.2007.03.015
[44] Yuan, J., Zhang, Z. and Zhang, Y. (2014) 13C-18O Bonds in Precipitated Calcite and Aragonite: An ab Initio Study. Open Journal of Geology, 4, 436-480. http://dx.doi.org/10.4236/ojg.2014.49034
[45] Schauble, E.A. and Eiler, J.M. (2004) Theoretical Estimates of Equilibrium 13C-18O Clumping in Carbonates and Organic Acids. Eos, Transactions American Geophysical Union, 85, 11A-0552.
[46] Watson, E.B. (1996) Surface Enrichment and Trace-Element Uptake during Crystal Growth. Geochimica et Cosmochimica Acta, 60, 5013-5020. http://dx.doi.org/10.1016/S0016-7037(96)00299-2
[47] Watson, E.B. (2004) A Conceptual Model for Near-Surface Kinetic Controls on the Trace-Element and Stable Isotope Composition of Abiogenic Calcite Crystals. Geochimica et Cosmochimica Acta, 68, 1473-1488. http://dx.doi.org/10.1016/j.gca.2003.10.003
[48] Watson, E.B. and Liang, Y. (1995) A Simple Model for Sector Zoning in Slowly Grown Crystals: Implications for Growth Rate and Lattice Diffusion, with Emphasis on Accessory Minerals in Crustal Rocks. American Mineralogist, 80, 1179-1187.
[49] DePaolo, D.J. (2011) Surface Kinetic Model for Isotopic and Trace Element Fractionation during Precipitation of Calcite from Aqueous Solutions. Geochimica et Cosmochimica Acta, 75, 1039-1056. http://dx.doi.org/10.1016/j.gca.2010.11.020
[50] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2009) Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford.
[51] Rustad, J.R., Nelmes, S.L., Jackson, V.E. and Dixon, D.A. (2008) Quantum-Chemical Calculations of Carbon-Isotope Fractionation in CO2(g), Aqueous Carbonate Species, and Carbonate Minerals. Journal of Physical Chemistry A, 112, 542-555. http://dx.doi.org/10.1021/jp076103m
[52] Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133.
[53] Petersson, G.A. and Allaham, M.A. (1991) A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms. Journal of Chemical Physics, 94, 6081-6090. http://dx.doi.org/10.1063/1.460447
[54] Petersson, G.A., Bennett, A., Tensfeldt, T.G., Allaham, M.A., Shirley, W.A. and Mantzaris, J. (1988) A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements. Journal of Chemical Physics, 89, 2193-2218. http://dx.doi.org/10.1063/1.455064
[55] Urey, H.C. (1947) The Thermodynamic Properties of Isotopic Substances. Journal of the Chemical Society, 562-581. http://dx.doi.org/10.1039/jr9470000562
[56] Bigeleisen, J. and Mayer, M.G. (1947) Calculation of Equilibrium Constants for Isotopic Exchange Reactions. Journal of Chemical Physics, 15, 261-267. http://dx.doi.org/10.1063/1.1746492
[57] Jarosch, D. and Heger, G. (1986) Neutron Diffraction Refinement of the Crystal-Structure of Aragonite. Tschermaks mineralogische und petrographische Mitteilungen, 35, 127-131.
http://dx.doi.org/10.1007/BF01140844
[58] Maslen, E.N., Streltsov, V.A. and Streltsova, N.R. (1993) X-Ray Study of the Electron-Density in Calcite, CaCo3. Acta Crystallographica Section B-Structural Science, 49, 636-641.
http://dx.doi.org/10.1107/S0108768193002575
[59] Steinfink, H. and Sans, F.J. (1959) Refinement of the Crystal Structure of Dolomite. American Mineralogist, 44, 679-682.
[60] Yuan, J. (2014) Reduced Partition Function Ratio in the Frequency Complex Plane: A Mathematical Approach. Open Journal of Geology, 4, 654-664. http://dx.doi.org/10.4236/ojg.2014.412049
[61] Yuan, J. and Liu, Y. (2012) Quantum-Mechanical Equilibrium Isotopic Fractionation Correction to Radiocarbon Dating: A Theory Study. Journal of Radioanalytical and Nuclear Chemistry, 292, 335-338. http://dx.doi.org/10.1007/s10967-011-1563-3
[62] Grauel, A.L., Schmid, T.W., Hu, B., Bergami, C., Capotondi, L., Zhou, L.P., et al. (2013) Calibration and Application of the “Clumped Isotope” Thermometer to Foraminifera for High-Resolution Climate Reconstructions. Geochimica et Cosmochimica Acta, 108, 125-140.
http://dx.doi.org/10.1016/j.gca.2012.12.049
[63] McCrea, J.M. (1950) On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. Journal of Chemical Physics, 18, 849-857. http://dx.doi.org/10.1063/1.1747785
[64] Swart, P.K., Burns, S.J. and Leder, J.J. (1991) Fractionation of the Stable Isotopes of Oxygen and Carbon in Carbon-Dioxide during the Reaction of Calcite with Phosphoric-Acid as a Function of Temperature and Technique. Chemical Geology, 86, 89-96.
[65] Cao, X. and Liu, Y. (2012) Theoretical Estimation of the Equilibrium Distribution of Clumped Isotopes in Nature. Geochimica et Cosmochimica Acta, 77, 292-303.
http://dx.doi.org/10.1016/j.gca.2011.11.021
[66] Wang, J., Qian, Z., Qian, W., Zhuang, Y., He, Y. and Pan, C. (1999) Probability Statistics (Engineering Mathematics). Tongji University, Shanghai, 240-247. (In Chinese)
[67] Cui, L.L. and Wang, X. (2014) Determination of Clumped Isotopes in Carbonate Using Isotope Ratio Mass Spectrometer: Effects of Extraction Potential and Long-Term Stability. International Journal of Mass Spectrometry, 372, 46-50. http://dx.doi.org/10.1016/j.ijms.2014.08.006
[68] Levine, I.N. (1995) Physical Chemistry. 4th Edition, McGraw-Hill, Inc., New York.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.