Numerical Study of Highly Nonlinear Photonic Crystal Fiber with Tunable Zero Dispersion Wavelengths

Abstract

Solid-core silica photonic crystal fiber is proposed borrowing the concept of golden ratio (1.618) and keeping it between pitch and air hole diameter Λ/d in a subset of six rings of air-holes with hexagonal arrangement. In the case when we have a pitch equal to one micron (Λ = 1 μm), we need air-holes diameters d = 0.618 μm in order to achieve two zero dispersion wavelength (ZDW) points at 725 nm and 1055 nm; this gives us the possibility to use the fiber for supercontinuum generation, by pumping close to that points, pulse compression or reshaping. We analyzed a series of fibers using this relation and showed the possibilities of tunable ZDW in a wide range of wavelengths from 725 nm to 2000 nm, with low losses and small effective area. In agreement with the ZDW point needed, the geometry of the structure can be modified to the point of having only three rings of air holes that surround the solid core with low losses and good confinement mode. The design proposed here is analyzed using the finite element method with perfectly matched layers, including the material dispersion directly into the model applying the Sellmeier’s equation.

Share and Cite:

García, A. , Sukhoivanov, I. , Lucio, J. , Manzano, O. , Guryev, I. , García, J. and Ortiz, G. (2015) Numerical Study of Highly Nonlinear Photonic Crystal Fiber with Tunable Zero Dispersion Wavelengths. Journal of Electromagnetic Analysis and Applications, 7, 141-151. doi: 10.4236/jemaa.2015.75016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Knight, J.C. (2003) Photonic Crystal Fibres. Nature, 424, 847-851.
http://dx.doi.org/10.1038/nature01940
[2] Russell, P. (2003) Photonic Crystal Fibers. Science, 299, 358-362.
http://dx.doi.org/10.1126/science.1079280
[3] Boswetter, P., Baselt, T., Ebert, F., Basan, F. and Hartmann, P. (2011) Group-Velocity Dispersion in Multimode Photonic Crystal Fibers Measured Using Time-Domain White-Light Interferometry. Proceedings of SPIE, 7914, Article ID: 791422.
http://dx.doi.org/10.1117/12.873307
[4] Liao, M., Chaudhari, C., Qin, G., Yan, X., Suzuki, T. and Ohishi, Y. (2009) Tellurite Microstructure Fibers with Small Hexagonal Core for Supercontinuum Generation. Optics Express, 17, 12174-12182.
http://dx.doi.org/10.1364/OE.17.012174
[5] Gaeta, A.L. (2002) Nonlinear Propagation and Continuum Generation in Microstructured Optical Fibers. Optics Letters, 27, 924-926.
http://dx.doi.org/10.1364/OL.27.000924
[6] Reeves, W.H., Skryabin, D.V., Biancalana, F., Knight, J.C., Russell, P.St.J., Omenetto, F.G., Efimov, A. and Taylor, A.J. (2003) Transformation and Control of Ultra-Short Pulses in Dispersion-Engineered Photonic Crystal Fibres. Nature, 424, 511-515.
http://dx.doi.org/10.1038/nature01798
[7] Dudley, J.M., Genty, G. and Coen, S. (2006) Supercontinuum Generation in Photonic Crystal Fibers. Reviews of Modern Physics, 78, 1135-1184.
http://dx.doi.org/10.1103/RevModPhys.78.1135
[8] Sukhoivanov, I.A., Iakushev, S.O., Shulika, O.V., Díez, A. and Andrés, M. (2013) Femtosecond Parabolic Pulse Shaping in Normally Dispersive Optical Fibers. Optical Express, 21, 17770-17785.
http://dx.doi.org/10.1364/OE.21.017769
[9] Johnson, S.G. and Joannopoulos, J.D. (2001) Block-Iterative Frequency-Domain Methods for Maxwell’s Equations in a Planewave Basis. Optics Express, 8, 173-190.
http://dx.doi.org/10.1364/OE.8.000173
[10] White, T.P., Kuhlmey, B.T., McPhedran, R.C., Maystre, D., Renversez, G., de Sterke, C.M. and Botten, L.C. (2002) Multipole Method for Microstructured Optical Fibers. I. Formulation. Journal of the Optical Society of America B, 19, 2322-2330.
http://dx.doi.org/10.1364/JOSAB.19.002322
[11] Laegsgaard, J. and Roberts, P.J. (2008) Dispersive Pulse Compression in Hollow-Core Photonic Band-Gap Fibers. Optics Express, 16, 9628-9644.
http://dx.doi.org/10.1364/OE.16.009628
[12] Lim, H. and Wise, F. (2004) Control of Dispersion in a Femtosecond Ytterbium Laser by Use of Hollow-Core Photonic Band-Gap Fiber. Optics Express, 12, 2231-2235.
http://dx.doi.org/10.1364/OPEX.12.002231
[13] Dudley, J.M. and Taylor, J.R. (2010) Supercontinuum Generation in Optical Fibres. Cambridge University Press, Cambridge, 32-96.
http://dx.doi.org/10.1017/CBO9780511750465
[14] Ferrando, A., Silvestre, E., Miret, J.J., Monsoriu, J.A., Andres, M.V. and Russell, P.St.J. (1999) Designing a Photonic Crystal Fiber with Flattened Chromatic Dispersion. Electronics Letters, 35, 325-326.
http://dx.doi.org/10.1049/el:19990189
[15] Ferrando, A., Silvestre, E., Miret, J.J. and Andres, P. (2000) Nearly Zero Ultraflattened Dispersion in Photonic Crystal Fibers. Optics Letters, 25, 790-792.
http://dx.doi.org/10.1364/OL.25.000790
[16] Reeves, W.H., Knight, J.C., Russell, P.St.J. and Roberts, P.J. (2002) Demonstration of Ultra-Flattened Dispersion in Photonic Crystal Fibers. Optics Express, 10, 609-613.
http://dx.doi.org/10.1364/OE.10.000609
[17] Birks, T.A., Mogilevstev, D., Knight, J.C. and Russell, P.St.J. (1999) Dispersion Compression Using Single Material Fibers. IEEE Photonics Technology Letters, 11, 674-676.
http://dx.doi.org/10.1109/68.766781
[18] Knight, J.C., Arriaga, J., Birks, T.A., Ortigosa-Blanch, A., Wadsworth, W.J. and Russell, P.St.J. (2000) Anomalous Dispersion in Photonic Crystal Fiber. IEEE Photonics Technology Letters, 12, 807-809.
http://dx.doi.org/10.1109/68.853507
[19] Mogilevtsev, D., Birks, T.A. and Russell, P.S.J. (1998) Group-Velocity Dispersion in Photonic Crystal Fibers. Optics Letters, 23, 1662-1664.
[20] Knight, J.C., Arriaga, J., Birks, T.A., Ortigosa-Blanch, A., Wadsworth, W.J. and Russell, P.S.J. (1998) Anomalous Dispersion in Photonic Crystal Fiber. IEEE Photonics Technology Letters, 12, 817-819.
[21] Cheng, H., Crutchfield, W.Y., Doerg, M. and Greengard, L. (2004) Fast, Accurate Integral Equation Methods for the Analysis of Photonic Crystal Fibers I: Theory. Optics Express, 12, 3791-3805.
http://dx.doi.org/10.1364/OPEX.12.003791
[22] Saitoh, K., Koshiba, M., Hasegawa, T. and Sasaoka, E. (2003) Chromatic Dispersion Control in Photonic Crystal Fibers: Application to Ultra Flattened Dispersion. Optics Express, 11, 843-852.
http://dx.doi.org/10.1364/OE.11.000843
[23] Tajima, K., Zhou, J., Kurokawa, K. and Nakajima, K. (2011) Low Water Peak Photonic Crystal Fibers. European Conference on Optical Communication (ECOC), Rimini, September 2003, Th4.1.6.
[24] White, T.P., McPhedran, R.C., de Sterk, C.M., Botten, L.C. and Steel, M.J. (2001) Confinement Losses in Microstructured Optical Fibers. Optics Letters, 26, 1660-1662.
http://dx.doi.org/10.1364/OL.26.001660
[25] Shulika, O., Guryev, I., Gurieva, N., Sukhoivanov, I. and Andrade Lucio, J.A. (2013) Graphics Processing Unit-Accelerated Finite-Difference Time-Domain Method for Characterization of Photonic Crystal Fibers. Optical Engineering, 52, Article ID: 126109.
http://dx.doi.org/10.1117/1.OE.52.12.126109
[26] Marcuse, D. (1977) Loss Analysis of Single-Mode Fiber Splices. Bell System Technical Journal, 56, 703-718.
http://dx.doi.org/10.1002/j.1538-7305.1977.tb00534.x
[27] Koshiba, M. and Saitoh, K. (2004) Applicability of Classical Optical Fiber Theories to Holey Fibers. Optics Letters, 29, 1739-1741.
http://dx.doi.org/10.1364/OL.29.001739
[28] Mortensen, N.A., Folkenberg, J.R., Nielsen, M.D. and Hansen, K.P. (2003) Modal Cut-Off and the V Parameter in Photonic Crystal Fibers. Optics Letters, 28, 1879-1881.
http://dx.doi.org/10.1364/OL.28.001879
[29] Miyagi, K., Namihira, Y., Razzak, S.M.A., Kaijage, S.F. and Begum, F. (2010) Measurements of Mode Field Diameter and Effective Area of Photonic Crystal Fibers by Far-Field Scanning Technique. Optical Review, 17, 388-392.
http://dx.doi.org/10.1007/s10043-010-0072-x
[30] Liu, Z.L., Hou, L.T. and Wang, W. (2009) Tailoring Nonlinearity and Dispersion of Photonic Crystal Fibers Using Hybrid Cladding. Brazilian Journal of Physics, 39, 50-54.
http://dx.doi.org/10.1590/S0103-97332009000100009
[31] Frosz, M., Falk, P. and Bang, O. (2005) The Role of the Second Zero-Dispersion Wavelength in Generation of Supercontinua and Bright-Bright Soliton-Pairs across the Zero-Dispersion Wavelength. Optics Express, 13, 6181-6192.
http://dx.doi.org/10.1364/OPEX.13.006181
[32] Hilligsøe, K.M., Andersen, T., Paulsen, H., Nielsen, C., Mølmer, K., Keiding, S., Kristiansen, R., Hansen, K. and Larsen, J. (2004) Supercontinuum Generation in a Photonic Crystal Fiber with Two Zero Dispersion Wavelengths. Optics Express, 12, 1045-1054.
http://dx.doi.org/10.1364/OPEX.12.001045
[33] Tse, M.L.V., Horak, P., Poletti, F., Broderick, N.G., Price, J.H., Hayes, J.R. and Richardson, D.J. (2006) Supercontinuum Generation at 1.06μm in Holey Fibers with Dispersion Flattened Profiles. Optics Express, 14, 4445-4451.
http://dx.doi.org/10.1364/OE.14.004445
[34] Shulika, O.V., Sukhoivanov, I.A., Guryev, I.V., Andrade-Lucio, J.A., Ibarra-Manzano, O., Barrientos-Garcia, A. and Ramos-Ortiz, G. (2013) Numerical Study of Few-Cycle Pulses Generation from Supercontinuum in ANDi-PCF. Acta Universitaria, 23, 40-44.
[35] Shulika, O.V., Sukhoivanov, I.A., Ramos-Ortiz, G., Guryev, I.V., Iakushev, S.O. and Andrade Lucio, J.A. (2013) Characterization of All-Normal Dispersion Microstructured Optical Fiber via Numerical Simulation of Passive Nonlinear Pulse Reshaping and Single-Pulse Flat-Top Supercontinuum. Journal of Nanophotonics, 8, Article ID: 083890.
[36] Hult, J. (2007) A Fourth-Order Runge-Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers. Journal of Lightwave Technology, 25, 3770-3775.
http://dx.doi.org/10.1109/JLT.2007.909373
[37] Hernandez-Garcia, J.C., Pottiez, O., Estudillo-Ayala, J.M. and Rojas-Laguna, R. (2012) Numerical Analysis of a Broadband Spectrum Generated in a Standard Fiber by Noise-Like Pulses from a Passively Mode-Locked Fiber Laser. Optics Communications, 285, 1915-1919.
http://dx.doi.org/10.1016/j.optcom.2011.12.069
[38] Blow, K.J. and Wood, D. (1989) Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibers. IEEE Journal of Quantum Electronics, 25, 2665-2673.
http://dx.doi.org/10.1109/3.40655
[39] Iakushev, S.O., Shulika, O.V. and Sukhoivanov, I.A. (2012) Passive Nonlinear Reshaping towards Parabolic Pulses in the Steady-State Regime in Optical Fibers. Optics Communications, 285, 4493-4499.
http://dx.doi.org/10.1016/j.optcom.2012.06.024
[40] Agrawal, G. (2012) Nonlinear Fiber Optics. 5th Edition, Academic Press, Waltham, 648 p.
[41] Iakushev, S.O., Shulika, O.V., Sukhoivanov, I.A., Fesenko, V.I., Andrés, M.V. and Sayinc, H. (2014) Formation of Ultrashort Triangular Pulses in Optical Fibers. Optics Express, 22, 29119-29134.
http://dx.doi.org/10.1364/OE.22.029119
[42] Sukhoivanov, I.A., Iakushev, S.O., Shulika, O.V., Andrade Lucio, J.A., Díez, A. and Andrés, M. (2014) Supercontinuum Generation at 800 nm in All-Normal Dispersion Photonic Crystal Fiber. Optics Express, 22, 30234-30250.
http://dx.doi.org/10.1364/OE.22.030234
[43] Yakushev, S.O., Shulika, O.V., Petrov, S.I. and Sukhoivanov, I.A. (2008) Chirp Compression with Single Chirped Mirrors and Its Assembly. Microelectronics Journal, 39, 690-695.
http://dx.doi.org/10.1016/j.mejo.2007.07.056
[44] Iakushev, S.O., Shulika, O.V., Lysak, V.V. and Sukhoivanov, I.A. (2008) Air-Gap Silicon Nitride Chirped Mirror for Few-Cycle Pulse Compression. Optoelectronics and Advanced Materials—Rapid Communications, 2, 686-688.
[45] Agrawal, G. (2008) Application of Nonlinear Fiber Optics. 2nd Edition, Academic Press, Waltham.
[46] Iakushev, S.O., Shulika, O.V. and Garcia, J.J.R. (2010) Optical Wave Breaking Cancelation and Formation of Quasi-Parabolic Ultrashort Pulses. 10th International Conference on Laser and Fiber-Optical Networks Modeling, Sevastopol, 12-14 September 2010, 176-179.
http://dx.doi.org/10.1109/LFNM.2010.5624206

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.