Critical Theory of Two-Dimensional Mott Transition: Integrability and Hilbert Space Mapping

DOI: 10.4236/jmp.2015.65069   PDF   HTML   XML   2,444 Downloads   2,718 Views   Citations

Abstract

We reconsider the Mott transition in the context of a two-dimensional fermion model with density-density coupling. We exhibit a Hilbert space mapping between the original model and the Double Lattice Chern-Simons theory at the critical point by use of the representation theory of the q-oscillator and Weyl algebras. The transition is further characterized by the ground state modification. The explicit mapping provides a new tool to further probe and test the detailed physical properties of the fermionic lattice model considered here and to enhance our understanding of the Mott transition(s).

Share and Cite:

Bottesi, F. and Zemba, G. (2015) Critical Theory of Two-Dimensional Mott Transition: Integrability and Hilbert Space Mapping. Journal of Modern Physics, 6, 634-639. doi: 10.4236/jmp.2015.65069.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bottesi, F.L. and Zemba, G.R. (2011) Annals of Physics, 326, 1916-1940.
http://dx.doi.org/10.1016/j.aop.2011.04.010
[2] Georges, A., Kotliar, G., Krauth, W. and Rosenberg, M. (1996) Reviews of Modern Physics, 68, 13.
[3] Polchinski, J. (1992) Effective Field Theory and the Fermi Surface. Lectures TASI, arXiv: hep-th/9210046.
[4] Sergeev, S.M. (2006) International Journal of Mathematics and Mathematical Sciences, 2006, Article ID: 92064.
http://dx.doi.org/10.1155/IJMMS/2006/92064
[5] Fradkin, E. (1989) Physical Review Letters, 63, 322.
http://dx.doi.org/10.1103/PhysRevLett.63.322
[6] Zamolodchikov, A. (1981) Communications in Mathematical Physics, 79, 489.
http://dx.doi.org/10.1007/BF01209309
[7] Shankar, R. (1990) International Journal of Modern Physics, B4, 2371.
http://dx.doi.org/10.1142/S0217979290001121
[8] Sergeev, S. (2006) Physics Letters, A357, 417-419.
http://dx.doi.org/10.1016/j.physleta.2006.04.089
[9] Bazhanov, V.V. and Sergeev, S.M. (2006) Journal of Physics, A39, 3295.
http://dx.doi.org/10.1088/0305-4470/39/13/009
[10] Kuniba, A., Okado, M. and Sergeev, S. (2015) Tetrahedron Equation and Generalized Quantum Groups. arXiv: 1503.08536 [math.QA].
Bazhanov, V.V. and Sergeev, S.M. (2015) Yang-Baxter Maps, Discrete Integrable Equations and Quantum Groups. arXiv: 1501.06984 [math-ph].
Kuniba, A., Okado, M. and Sergeev, S. (2015) Letters in Mathematical Physics, 105, 447-461.
Mangazeev, V.V., Bazhanov, V.V. and Sergeev, S.M. (2013) Journal of Physics, A46, 465206.
[11] Korepanov, I.G. (1995) Algebraic Integrable Dynamical Systems, 2+1-Dimensional Models in Wholly Discrete Space-Time, and Inhomogeneous Models in 2-Dimensional Statistical Physics. arXiv: solv-int/9506003.
[12] Grensing, G. (1998) Physics Letters, B419, 258.
http://dx.doi.org/10.1016/S0370-2693(97)01459-7
[13] Bos, M. and Nair, V.P. (1990) International Journal of Modern Physics, A5, 959.
http://dx.doi.org/10.1142/S0217751X90000453
[14] Trugengerber, C.A. (1994-1995) Topics in Planar Gauge Theories. Lausanne U.
[15] Witten, E. (1989) Communications in Mathematical Physics, 121, 351.
http://dx.doi.org/10.1007/BF01217730

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.