[1]
|
Segal, I.E. (1976) Mathematical Cosmology and Extragalactic Astronomy. Pure and Applied Mathematics, 68, Academic Press, New York.
|
[2]
|
Bulnes, F. (2006) Doctoral Course of Mathematical Electrodynamics. SEPI-IPN, Mexico, 9, 398-447.
|
[3]
|
Dummit, D.S. and Foote, R.M. (2004) Abstract Algebra. Wiley, Hoboken.
|
[4]
|
Marsden, J.E. and Abraham, R. (1982) Manifolds, Tensor Analysis and Applications. Addison Wesley, Massachusetts.
|
[5]
|
Wilczek, F (2009) Majorana Returns. Nature Physics, 5, 614.
|
[6]
|
Bulnes, F. (2014) A Lie-QED-Algebra and Their Fermionic Fock Space in the Superconducting Phenomena. Quantum Mechanics, Rijeka.
|
[7]
|
Bulnes, F., Hernandez, E. and Maya, J. (2010) Design and Development of an Impeller Synergic System of Electromagnetic Type for Levitation, Suspension and Movement of Symmetrical Bodies, IMECE/ASME, British Columbia, Canada.
|
[8]
|
Nielsen, H.B. and Olesen, P. (1973) Vortex-Line Models for Dual Strings. Nuclear Physics B, 61, 45-61.
|
[9]
|
Alario, M.A. and Vicent, J.L. (1991) Superconductivity. Eudema Fortuny, Madrid, Spain.
|
[10]
|
Ginzburg, V.L. and Landau, L.D. (1950) Zh. Eksp. Teor. Fiz. 20, 1064.
|
[11]
|
Bulnes, F., Martínez, I. and Maya, J. (2012) Design and Development of Impeller Synergic Systems of Electromagnetic Type to Levitation/Suspension Flight of Symmetrical Bodies. Journal of Electromagnetic Analysis and Applications, 4, 42-52.
|
[12]
|
Bulnes, F. (2013) Orbital Integrals on Reductive Lie Groups and Their Algebras. Intech, Rijeka.
http://www.intechopen.com/books/orbital-integrals-on-reductive-lie-groups-and-their-algebras/orbital-integrals-on-reductive-lie-groups-and-their-algebrasB
|
[13]
|
Strutinsky, V.M. (1967) Shell Effects in Nuclear Physics and Deformation Energies. Nuclear Physics A, 95, 420-442.
|
[14]
|
Hossenfelder, S. (2006) Anti-Gravitation. Elsevier Science.
|
[15]
|
Dixmier, J. (1969) Les C*-algèbres et leurs representations. Gauthier-Villars, France.
|
[16]
|
Cooper, L. (1956) Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review, 104, 1189-1190.
|
[17]
|
Verkelov, I., Goborov, R. and Bulnes, F. (2013) Fermionic Fock Space in Superconducting Phenomena and Their Applications. Journal on Photonics and Spintronics, 2, 19-29.
|
[18]
|
Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Microscopic Theory of Superconductivity. Physical Review, 106, 162-164.
|
[19]
|
Bulnes, F. (2013) Mathematical Nanotechnology: Quantum Field Intentionality. Journal of Applied Mathematics and Physics, 1, 25-44.
|
[20]
|
Llano, M. (2003) Unificación de la Condensación de Bose-Einstein con la Teoría BSC de Superconductores. Rev. Ciencias Exactas y Naturais, 5, 9-21.
|
[21]
|
Bulnes, F. (2013) Quantum Intentionality and Determination of Realities in the Space-Time through Path Integrals and Their Integral Transforms, Advances in Quantum Mechanics, Prof. Paul Bracken (Ed.), InTech.
http://www.intechopen.com/books/advances-in-quantum-mechanics/quantum-intentionality-and-determination-of-realities-in-the-space-time-through-path-integrals-and-t
|
[22]
|
Landau, L.D. and Lifshitz, E.M. (1960) Electrodynamics of Continuous Media. Volume 8 of Course of Theorical Physics, Pergamon Press, London.
|
[23]
|
Bulnes, F. (1998) The Super Canonical Algebra . International Conferences of Electrodynamics in Veracruz, IM/UNAM, Mex-ico.
|