[1]
|
Gauss, C.F. (1801) Disquitiones Arithmeticae. Fleischer, Leipzig.
|
[2]
|
Dickson, L.E. (1920) History of the Theory of Numbers, Vol. II. Carnegie Institute of Washington, Washington.
|
[3]
|
Cooper, S. and Hirschhorn, M.D. (2007) On the Number of Primitive Representations of Integers as Sums of Squares. Ramanujan Journal, 13, 7-25. http://dx.doi.org/10.1007/s11139-006-0240-6
|
[4]
|
Hirschhorn, M.D. and Sellers, J.A. (1999) On Representations of a Number as a Sum of Three Squares. Discrete Mathematics, 199, 85-101. http://dx.doi.org/10.1016/S0012-365X(98)00288-X
|
[5]
|
Bell, E.T. (1924) The Numbers of Representations of Integers in Certain Forms ax2 + by2 + cz2. American Mathematical Monthly, 31, 126-131. http://dx.doi.org/10.2307/2299890
|
[6]
|
Dickson, L.E. (1923) History of the Theory of Numbers, Vol. III. Carnegie Institute of Washington, Washington.
|
[7]
|
Tunnel, J. (1983) A Classical Diophantine Problem and Modular Forms of Weight 3/2. Inventiones Mathematicae, 72, 323-334. http://dx.doi.org/10.1007/BF01389327
|
[8]
|
Mordell, L.J. (1969) Diophantine Equations. Pure and Applied Mathematics, Vol. 30, London and New York.
|
[9]
|
Koblitz, N. (1984) Introduction to Elliptic Curves and Modular Forms. Springer, New York. http://dx.doi.org/10.1007/978-1-4684-0255-1
|
[10]
|
Hürlimann, W. (2011) A Congruent Twin Number Problem. Pioneer Journal of Algebra, Number Theory and Its Applications, 1, 53-66.
|
[11]
|
Cohen, H. (2007) Number Theory, Volume I: Tools and Diophantine Equations (Graduate Texts in Mathematics). Springer Science + Business Media, LLC, New York.
|
[12]
|
Hurwitz, A. (1886) Ueber die Anzahl der Classen Quadratischer Formen von Negativer Diskriminante. Journal für Diereine und Angewandte Mathematik, 99, 165-168.
|
[13]
|
Cooper, S. and Hirschhorn, M.D. (2004) Results of Hurwitz Type for Three Squares. Discrete Mathematics, 274, 9-24. http://dx.doi.org/10.1016/S0012-365X(03)00079-7
|
[14]
|
Berndt, B.C. (1991) Ramanujan’s Notebooks, Part III. Springer, New York. http://dx.doi.org/10.1007/978-1-4612-0965-2
|
[15]
|
Bateman, P.T. and Knopp, M.I. (1998) Some New Old-Fashioned Modular Identities. The Ramanujan Journal, 2, 247-269. http://dx.doi.org/10.1023/A:1009782529605
|
[16]
|
Barrucand, P., Cooper, S. and Hirschhorn, M.D. (1998) Relations between Squares and Triangles. Discrete Mathematics, 248, 245-247. http://dx.doi.org/10.1016/S0012-365X(01)00344-2
|
[17]
|
Cooper, S. and Hirschhorn, M.D. (2004) A Combinatorial Proof of a Result from Number Theory. Integers, 4, Paper A09.
|
[18]
|
Nagell, T. (1929) L’analyse indéterminée de degré supérieur. Gauthier-Villars, Paris.
|
[19]
|
Bastien, L. (1915) Nombres Congruents. L’Intermédiaire des Mathématiciens, 22, 231-232.
|
[20]
|
Heegner, K. (1952) Diophantische Analysis und Modulfunktionen. Mathematische Zeitschrift, 56, 227-253. http://dx.doi.org/10.1007/BF01174749
|
[21]
|
Birch, B.J. (1968) Diophantine Analysis and Modular Functions. Oxford University Press, Oxford, 35-42.
|
[22]
|
Stephens, N.M. (1975) Congruence Properties of Congruent Numbers. Bulletin of the London Mathematical Society, 7, 182-184. http://dx.doi.org/10.1112/blms/7.2.182
|
[23]
|
Alter, R., Curtz, T.B. and Kubota, K.K. (1972) Remarks and Results on Congruent Numbers. Proceedings of the 3rd Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, 28 February-2 March 1972, 27-35.
|
[24]
|
Conrad, K. (2008) The Congruent Number Problem. Harvard College Mathematical Review, 2, 58-73.
|
[25]
|
Ono, T. (1994) Variations on a Theme of Euler. Quadratic Forms, Elliptic Curves, and Hopf Maps. Plenum Press, New York and London. http://dx.doi.org/10.1007/978-1-4757-2326-7
|