[1]
|
Derwent, R.G. and Kay, P.J.A. (1988) Factors Influencing the Ground Level Distribution of Ozone in Europe. Environmental Pollution, 55, 191-219, 1988. See also Air Quality Criteria for Ozone and Related Photochemical Oxidants. Environmental Protection Agency, 3-6, 1993.
|
[2]
|
Cartalis, C. and Varotsos, C. (1994) Surface Ozone in Athens, Greece, at the Beginning and at the End of the 20th Century. Atmospheric Environment, 28, 3-8.
|
[3]
|
Lisac, I. and Grubisic, V. (1991) An Analysis of Surface Ozone Data Measured at the End of the 19th Century in Zagreb, Yugoslavia. Atmospheric Environment, 25, 481-486.
http://dx.doi.org/10.1016/0960-1686(91)90319-3
|
[4]
|
Nolle, M., Ellul, R., Ventura, F. and Güsten, H. (2005) A Study of Historical Surface Ozone Measurements (1884- 1900) on the Island of Gozo in the Central Mediterranean. Atmospheric Environment, 39, 5608-5618.
http://dx.doi.org/10.1016/j.atmosenv.2005.06.017
|
[5]
|
Vingarzan, R. (2004) A Review of Surface Ozone Background Levels and Trends. Atmospheric Environment, 38, 3431-3442.
http://dx.doi.org/10.1016/j.atmosenv.2004.03.030
|
[6]
|
Fishman, J. (1991) The Global Consequences of Increasing Tropospheric Ozone Concentrations. Chemosphere, 22, 685-695.
http://dx.doi.org/10.1016/0045-6535(91)90296-P
|
[7]
|
Fuhrer, J., Skarby, L. and Ashmore, M.R. (1997) Critical Levels for Ozone Effects on Vegetation in Europe. Environmental Pollution, 97, 91-106.
http://dx.doi.org/10.1016/S0269-7491(97)00067-5
|
[8]
|
Lippmann, M. (1991. Health Effects of Tropospheric Ozone. Environmental Science & Technology, 25, 1954-1962.
http://dx.doi.org/10.1021/es00024a001
|
[9]
|
Hanna, S.R., Chang, J.C. and Fernau, M.E. (1998) Monte Carlo Estimates of Uncertainties in Predictions by a Photochemical Grid Model (UAM-IV) Due to Uncertainties in Input Variables. Atmospheric Environment, 32, 3619-3628.
http://dx.doi.org/10.1016/S1352-2310(97)00419-6
|
[10]
|
Vautard, R., Beekmann, M., Roux, J. and Gombert, D. (2001) Validation of a Hybrid Forecasting System for the Ozone Concentrations over the Paris Area. Atmospheric Environment, 35, 2449-2461.
http://dx.doi.org/10.1016/S1352-2310(00)00466-0
|
[11]
|
Yi, J.S. and Prybutok, V.R. (1996) A Neural Network Model Forecasting for Prediction of Daily Maximum Ozone Concentration in an Industrialized Urban Area. Environmental Pollution, 92, 349-357.
http://dx.doi.org/10.1016/0269-7491(95)00078-X
|
[12]
|
Pires, J.C.M. and Martins, F.G. (2011) Correction Methods for Statistical Models in Tropospheric Ozone Forecasting. Atmospheric Environment, 45, 2413-2417.
http://dx.doi.org/10.1016/j.atmosenv.2011.02.011
|
[13]
|
Sousa, S.I.V., Pires, J.C.M., Pereira, M.C., Alvim-Ferraz, M.C.M. and Martins, F.G. (2009) Potentialities of Quantile Regression to Predict Ozone Concentrations. Environmetrics, 20, 147-158.
http://dx.doi.org/10.1002/env.916
|
[14]
|
Cannon, A.J. and Lord, E.R. (2000) Forecasting Summertime Surface-Level Ozone Concentrations in the Lower Fraser Valley of British Columbia: An Ensemble Neural Network Approach. Journal of the Air & Waste Management Association, 50, 322-339.
http://dx.doi.org/10.1080/10473289.2000.10464024
|
[15]
|
Gardner, M. and Dorling, S. (2001) Artificial Neural Network-Derived Trends in Daily Maximum Surface Ozone Concentrations. Journal of the Air & Waste Management Association, 51, 1202-1210.
http://dx.doi.org/10.1080/10473289.2001.10464338
|
[16]
|
Inal, F. (2010) Artificial Neural Network Prediction of Tropospheric Ozone Concentrations in Istanbul, Turkey. CLEAN—Soil, Air, Water, 38, 897-908.
http://dx.doi.org/10.1002/clen.201000138
|
[17]
|
Latini, G., Grifoni, R.C. and Passerini, G. (2002) The Importance of Meteorology in Determining Surface Ozone Concentrations—A Neural Network Approach. Ecology and the Environment, 8, 405-414.
|
[18]
|
Lu, H.C., Hsieh, J.C. and Chang, T.S. (2006) Prediction of Daily Maximum Ozone Concentrations from Meteorological Conditions Using a Two Stage Neural Network. Atmospheric Research, 81, 124-139.
http://dx.doi.org/10.1016/j.atmosres.2005.11.007
|
[19]
|
Pires, J.C.M., Alvim-Ferraz, M.C.M., Pereira, M.C. and Martins, F.G. (2010) Evolutionary Procedure Based Model to Predict Ground-Level Ozone Concentrations. Atmospheric Pollution Research, 1, 215-219.
http://dx.doi.org/10.5094/APR.2010.028
|
[20]
|
Pires, J.C.M., Alvim-Ferraz, M.C.M., Pereira, M.C. and Martins, F.G. (2011) Prediction of Tropospheric Ozone Concentrations: Application of a Methodology Based on the Darwin’s Theory of Evolution. Expert Systems with Applications, 38, 1903-1908.
http://dx.doi.org/10.1016/j.eswa.2010.07.122
|
[21]
|
Bowden, G.J., Maier, H.R. and Dandy, G.C. (2002) Optimal Division of Data for Neural Network Models in Water Resources Applications. Water Resources Research, 38, 2-1-2-11.
http://dx.doi.org/10.1029/2001WR000266
|
[22]
|
Chaloulakou, A. and Grivas, G. (2006) Artificial Neural Network Models for Prediction of PM10 Hourly Concentrations, in the Greater Area of Athens, Greece. Atmospheric Environment, 40, 1216-1229.
http://dx.doi.org/10.1016/j.atmosenv.2005.10.036
|
[23]
|
Garcia-Gimeno, R.M., Hervas-Martinez, C. and de Siloniz, M.I. (2002) Improving Artificial Neural Networks with a Pruning Methodology and Genetic Algorithms for Their Application in Microbial Growth Prediction in Food. International Journal of Food Microbiology, 72, 19-30.
http://dx.doi.org/10.1016/S0168-1605(01)00608-0
|
[24]
|
Hansen, J.V., McDonald, J.B. and Nelson, R.D. (1999) Time Series Prediction with Genetic Algorithm Designed Neural Networks: An Empirical Comparison with Modern Statistical Models. Computational Intelligence, 15, 171-184.
|
[25]
|
Corne, S.A. (1996) Artificial Neural Networks for Pattern Recognition. Concepts in Magnetic Resonance, 8, 303-324.
http://dx.doi.org/10.1002/(SICI)1099-0534(1996)8:5<303::AID-CMR1>3.0.CO;2-2
|
[26]
|
Paliwal, M. and Kumar, U.A. (2009) Neural Networks and Statistical Techniques: A Review of Applications. Expert Systems with Applications, 36, 2-17.
http://dx.doi.org/10.1016/j.eswa.2007.10.005
|
[27]
|
Schneider, G. and Wrede, P. (1998) Artificial Neural Networks for Computer-Based Molecular Design. Progress in Biophysics and Molecular Biology, 70, 175-222.
http://dx.doi.org/10.1016/S0079-6107(98)00026-1
|
[28]
|
Gupta, R.R. and Achenie, L.E.K. (2007) A Network Model for Gene Regulation. Computers & Chemical Engineering, 31, 950-961.
http://dx.doi.org/10.1016/j.compchemeng.2006.08.008
|
[29]
|
Zhang, G., Patuwo, B.E. and Hu, M.Y. (1998) Forecasting with Artificial Neural Networks: The State of the Art. International Journal of Forecasting, 14, 35-62.
http://dx.doi.org/10.1016/S0169-2070(97)00044-7
|
[30]
|
Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., et al. (1985) Statistics for the Evaluation and Comparison of Models. Journal of Geophysical Research, 90, 8995-9005.
http://dx.doi.org/10.1029/JC090iC05p08995
|
[31]
|
Camargo, A.P. and Sentelhas, P.C. (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapo- transpiração potencial no estado de São Paulo, Brasil. Revista Brasileira de Agrometeorologia, 5, 89-97.
|
[32]
|
Moreira, M.C., Cecilio, R.A. and Silva, K.R. (2007) Comparação de métodos para a estimativa das temperaturas do ar no Nordeste brasileiro. In: Congresso Brasileiro de Agrometeorologia, Anais SBAgro, Vol. 15 (CD-ROM).
|
[33]
|
Nagendra, S.M.S. and Khare, M. (2005) Modelling Urban Air Quality Using Artificial Neural Network. Clean Technologies and Environmental Policy, 7, 116-126.
http://dx.doi.org/10.1007/s10098-004-0267-6
|
[34]
|
de Souza Tadano, Y., Ugaya, C.M.L. and Franco, A.T. (2009) Método de regressão de Poisson: Metodologia para avaliação do impacto da poluição atmosférica na saúde populacional. Ambiente & Sociedade [online], 12, 241-255.
|