Soybean Seed Co-Inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A New Biotechnological Tool to Improve Yield and Sustainability

Abstract

Legume nodulation by rhizobia can supply crops with nitrogen and reduce environmental impacts caused by chemical fertilization. The soybean crop in Brazil is an impressive example of how biological N2 fixation can be employed with a plant species of high economic value. However, the development of more productive cultivars, along with the increasing global climatic changes demand agricultural practices to become more productive and yet more environmentally friendly. Plant growth-promoting rhizobacteria (PGPR) are highly beneficial to agriculture worldwide, acting in plant nutrition, protection, and growth stimulation. Azospirillum is, certainly, the most employed PGPR in the world, but little is known about its interaction with rhizobia, when both are applied to legume seeds. We have evaluated the co-inoculation of bradyrhizobia and azospirilla on soybean seeds under different soil and climate conditions in Brazil. Our results demonstrated that co-inoculation is efficient and beneficial to the crop, and promotes yield increases without adding any chemical N fertilizers even in soils where established populations of soybean bradyrhizobia exist. The strategy of co-inoculation thus represents a new biotechnological tool to improve soybean yield without adding any chemical N fertilizers, thus contributing to current practices of sustainability in agriculture.

Share and Cite:

Hungria, M. , Nogueira, M. and Araujo, R. (2015) Soybean Seed Co-Inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A New Biotechnological Tool to Improve Yield and Sustainability. American Journal of Plant Sciences, 6, 811-817. doi: 10.4236/ajps.2015.66087.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hungria, M., Campo, R.J., Mendes, I.C. and Graham, P.H. (2006) Contribution of Biological Nitrogen Fixation to the N Nutrition of Grain Crops in the Tropics: The Success of Soybean (Glycine max L. Merr.) in South America. In: Singh, R.P., Shankar, N. and Jaiwa, P.K., Eds., Nitrogen Nutrition and Sustainable Plant Productivity, Studium Press, Houston, 43-93.
[2] Hungria, M., Franchini, J.C., Campo, R.J., Crispino, C.C., Moraes, J.Z., Sibaldelli, R.N.R., Mendes, I.C. and Arihara, J. (2006) Nitrogen Nutrition of Soybean in Brazil: Contributions of Biological N2 Fixation and of N Fertilizer to Grain Yield. Canadian Journal of Plant Sciences, 86, 927-939.
http://dx.doi.org/10.4141/P05-098
[3] Tien, T.M., Gaskins, M.H. and Hubbell, D.H. (1979) Plant Growth Substances Produced by Azospirillum brasilense and Their Effect on the Growth of Pearl Millet (Pennisetumamericanum L.). Applied and Environmental Microbiology, 37, 1016-1024.
[4] Bottini, R., Fulchieri, M., Pearce, D. and Pharis, R. (1989) Identification of Gibberelins A1, A3, and Iso-A3 in Cultures of A. lipoferum. Plant Physiology, 90, 45-47.
http://dx.doi.org/10.1104/pp.90.1.45
[5] Strzelczyk, E., Kamper, M. and Li, C. (1994) Cytokinin-Like-Substances and Ethylene Production by Azospirillum in Media with Different Carbon Sources. Microbiological Research, 149, 55-60.
http://dx.doi.org/10.1016/S0944-5013(11)80136-9
[6] Wang, S., Huijun, W., Junqing, Q., Lingli, M., Jun, L., Yanfei, X. and Xuewen, G. (2009) Molecular Mechanism of Plant Growth Promotion and Induced Systemic Resistance to Tobacco Mosaic Virus by Bacillus spp. Journal of Microbiology and Biotechnology, 19, 1250-1258.
http://dx.doi.org/10.4014/jmb.0901.008
[7] Rodriguez, H., Gonzalez, T., Goire, I. and Bashan, Y. (2004) Gluconic Acid Production and Phosphate Solubilization by the Plant Growth-Promoting Bacterium Azospirillum spp. Naturwissenschaften, 91, 552-555.
http://dx.doi.org/10.1007/s00114-004-0566-0
[8] Döbereiner, J. and Pedrosa, F.O. (1987) Nitrogen-Fixing Bacteria in Non-Leguminous Crop Plants. Science Tech, Springer Verlag, Madison.
[9] Hungria, M., Campo, R.J., Souza, E.M. and Pedrosa, F.O. (2010) Inoculation with Selected Strains of Azospirillumbrasilense and A. lipoferum Improves Yields of Maize and Wheat in Brazil. Plant and Soil, 331, 413-425.
http://dx.doi.org/10.1007/s11104-009-0262-0
[10] Marks, B.B., Megías, M., Nogueira, M.A. and Hungria, M. (2013) Biotechnological Potential of Rhizobial Metabolites to Enhance the Performance of Bradyrhizobium japonicum and Azospirillum brasilense Inoculants with the Soybean and Maize Crops. Applied Microbiology and Biotechnology Express, 3, 21.
[11] Campo, R.J., Araujo, R.S. and Hungria, M. (2009) Nitrogen Fixation with the Soybean Crop in Brazil: Compatibility between Seed Treatment with Fungicides and Bradyrhizobial Inoculants. Symbiosis, 48, 154-163.
http://dx.doi.org/10.1007/BF03179994
[12] Hungria, M., Nogueira, M.A. and Araujo, R.S. (2013) Co-Inoculation of Soybeans and Common Beans with Rhizobia and Azospirilla: Strategies to Improve Sustainability. Biology and Fertility of Soils, 49, 791-801.
http://dx.doi.org/10.1007/s00374-012-0771-5
[13] MAPA (Ministério da Agricultura, Pecuária e Abastecimento) (2010) Instrução Normativa No 30, de 12/11/2010.
http://sistemasweb.agricultura.gov.br/sislegis/loginAction.do?method=exibirTela
[14] Cassán, F., Penna, C., Creus, C., Radovancich, D., Monteleleone, E., Salamone, I.G., Salvo, L.D., Mentel, I., Garcia, J., Pasarello, M.C.M., Ltt, L., Puente, M., Correa, O., Puunschke Valerio, K., Massa, R., Roosi, A., Diaz, M., Catafesta, M., Righes, S., Carletti, S. and Cáceres, E.R. (2010) Protocolo para el control de calidad de inoculantes que contienen Azospirillum sp. Associación Argentina de Microbiología, Buenos Aires. (Documento de Procedimientos de la REDCAI, 2)
[15] MAPA (Ministério da Agricultura, Pecuária e Abastecimento) (2011) Instrução Normativa No 13, de 24/03/2011.
http://sistemasweb.agricultura.gov.br/sislegis/loginAction.do?method=exibirTela
[16] Itzigsohn, R., Kapulnik, Y., Okon, Y. and Dovrat, A. (1993) Physiological and Morphological Aspects of Interactions between Rhizobium meliloti and Alfalfa (Medicago sativa) in Association with Azospirillum brasilense. Canadian Journal of Microbiology, 39, 610-615.
http://dx.doi.org/10.1139/m93-088
[17] Massoud, O.N., Morsy, E.M. and El-Batanony, N.H. (2009) Field Response of Snap Bean (Phaseolus vulgaris L.) to N2-Fixers Bacillus circulans and Arbuscular mycorrhizal Fungi Inoculation through Accelerating Rock Phosphate and Feldspar Weathering. Australian Journal of Basic and Applied Sciences, 3, 844-852.
[18] Stajkovic, O., Delic1, D., Josic, D., Kuzmanovic, D., Rasulic, N. and Knezevic-Vukcevic, J. (2011) Improvement of Common Bean Growth by Co-Inoculation with Rhizobium and Plant Growth-Promoting Bacteria. Romanian Biotechnological Letters, 16, 5919-5926.
[19] Yadegari, M. and Asadi Rahmani, H. (2008) Evaluation of Bean (Phaseolus vulgaris) Seeds Inoculation with Rhizobium phaseoli and Plant Growth Promoting Rhizobacteria(PGPR) on Yield and Yield Components. African Journal of Agricultural Research, 5, 792-799.
[20] Baset Mia, M.A., Shamsuddin, Z.H. and Mahmood, M. (2010) Use of Plant Growth Promoting Bacteria in Banana: A New Insight for Sustainable Banana Production. International Journal of Agriculture and Biology, 12, 459-467.
[21] Cassán, F.D. and Garcia De Salomone, I., Eds. (2008) Azospirillum sp.: Cell Physiology, Plant Interactions and Agronomic Research in Argentina. Associación Argentina de Microbiología, Buenos Aires.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.