Assessment of Regional Climate Models over Côte D'Ivoire and Analysis of Future Projections over West Africa
Kouakou Kouadio1,2*, Abdourahamane Konare1, Adama Diawara1, Bernard Kouakou Dje3, Vincent Olanrewaju Ajayi2, Arona Diedhiou4
1Laboratoire de Physique de l’Atmosphère et Mécanique de Fluide (LAPA-MF), Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire.
1Laboratoire de Physique de l’Atmosphère et Mécanique de Fluide (LAPA-MF), Université Felix Houphouët-Boigny, Abidjan, d’Ivoire.
1Société d’exploitation et développement Aéroportuaire et Météorologique, Abidjan, Côte d’Ivoire.
2WASCAL Graduate Research Program on West African Climate System (GRP-WACS), Federal University of Technology Akure (FUTA), Akure, Nigeria.
4LTHE-IRD, Université de Grenoble, Grenoble, France.
DOI: 10.4236/acs.2015.52005   PDF   HTML   XML   4,285 Downloads   5,387 Views   Citations


The ability of six Regional Climate Models (RCMs) used in AMMA-ENSEMBLES project is assessed over six meteorological stations in Côte d’Ivoire. The ensemble mean of the models is also used for the prediction of climate change over West Africa. The study focused on two periods: the period 1995-2005, the present-day simulations, is used to evaluate the skills of the models over the country and the years 2010-2013, for assessment of the future climate change scenario used. The results show that the skills of the models vary from one station to another and from one season to another. None of the models considered, presents an excellent performance over the entire country and in all the seasons. Generally, the ensemble mean of all the models presents better results when compared with the observation. These results suggest that the choice of any model for study over the country may depend on the focus of interest: intensity or variability of the rain and also on area of interest. The projection for 2020-2040, future climate change over West Africa shows that the Sahel exhibits a tendency to be drier while wetter Guinean coast is observed.

Share and Cite:

Kouadio, K. , Konare, A. , Diawara, A. , Dje, B. , Ajayi, V. and Diedhiou, A. (2015) Assessment of Regional Climate Models over Côte D'Ivoire and Analysis of Future Projections over West Africa. Atmospheric and Climate Sciences, 5, 63-81. doi: 10.4236/acs.2015.52005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Rodríguez-Fonseca, B., Janicot, S., Mohino, E., Losada, T., Bader, J., Caminade, C., et al. (2011) Interannual and Decadal SST-Forced Responses of the West African Monsoon. Atmospheric Science Letters, 12, 67-74.
[2] Fontaine, B., Garcia-Serrano, J., Roucou, P., Rodriguez-Fonseca, B., Losada, T., Chauvin, F., et al. (2010) Impacts of Warm and Cold Situations in the Mediterranean Basins on the West African Monsoon: Observed Connection Patterns (1979-2006) and Climate Simulations. Climate Dynamics, 35, 95-114.
[3] Lamb, P.J. (1978) Case Studies of Tropical Atlantic Surface Circulation Patterns during Recent Sub-Saharan Weather Anomalies: 1967 and 1968. Monthly Weather Review, 106, 482-491.<0482:CSOTAS>2.0.CO;2
[4] Betts, A.K., Ball, J.H., Beljaars, A.C.M., Miller, M.J. and Viterbo, P.A. (1996) The Land Surface-Atmosphere Interaction: A Review Based on Observational and Global Modeling Perspectives. Journal of Geophysical Research, 101, 7209.
[5] Koster, R.D. (2003) Observational Evidence That Soil Moisture Variations Affect Precipitation. Geophysical Research Letters, 30.
[6] Boone, A.A., Poccard-Leclercq, I., Xue, Y., Feng, J. and de Rosnay, P. (2010) Evaluation of the WAMME Model Surface Fluxes Using Results from the AMMA Land-Surface Model Intercomparison Project. Climate Dynamics, 35, 127-142.
[7] Pal, J.S. and Eltahir, E.A.B. (2003) A Feedback Mechanism between Soil-Moisture Distribution and Storm Tracks. Quarterly Journal of the Royal Meteorological Society, 129, 2279-2297.
[8] Taylor, C.M., Parker, D.J., Lloyd, C.R. and Thorncroft, C.D. (2005) Observations of Synoptic-Scale Land Surface Variability and Its Coupling with the Atmosphere. Quarterly Journal of the Royal Meteorological Society, 131, 913-937.
[9] Sultan, B. and Janicot, S. (2000) Abrupt Shift of the ITCZ over West Africa and Intra-Seasonal Variability. Geophysical Research Letters, 27, 3353-3356.
[10] Sultan, B., Janicot, S. and Diedhiou, A. (2003) The West African Monsoon Dynamics. Part I: Documentation of Intraseasonal Variability. Journal of Climate, 16, 3389-3406.
[11] Gallée, H., Moufouma-Okia, W., Bechtold, P., Brasseur, O., Dupays, I., Marbaix, P., et al. (2004) A High-Resolution Simulation of a West African Rainy Season Using a Regional Climate Model. Journal of Geophysical Research: Atmospheres, 109, 1984-2012.
[12] Afiesimama, E.A., Pal, J.S., Abiodun, B.J., Gutowski, W.J. and Adedoyin, A. (2006) Simulation of West African Monsoon Using the RegCM3. Part I: Model Validation and Interannual Variability. Theoretical and Applied Climatology, 86, 23-37.
[13] Segele, Z.T., Leslie, L.M. and Lamb, P.J. (2009) Evaluation and Adaptation of a Regional Climate Model for the Horn of Africa: Rainfall Climatology and Interannual Variability. International Journal of Climatology, 29, 47-65.
[14] Druyan, L.M., Fulakeza, M. and Lonergan, P. (2007) Spatial Variability of Regional Model Simulated June-September Mean Precipitation over West Africa. Geophysical Research Letters, 34, Article ID: L18709.
[15] Druyan, L.M., Fulakeza, M. and Lonergan, P. (2008) The Impact of Vertical Resolution on Regional Model Simulation of the West African Summer Monsoon. International Journal of Climatology, 28, 1293-1314.
[16] Druyan, L.M., Feng, J., Cook, K.H., Xue, Y., Fulakeza, M., Hagos, S.M., et al. (2010) The WAMME Regional Model Intercomparison Study. Climate Dynamics, 35, 175-192.
[17] Sylla, M.B., Coppola, E., Mariotti, L., Giorgi, F., Ruti, P.M., Dell’Aquila, A., et al. (2010) Multiyear Simulation of the African Climate Using a Regional Climate Model (RegCM3) with the High Resolution ERA-Interim Reanalysis. Climate Dynamics, 35, 231-247.
[18] Konare, A., Zakey, A.S., Solmon, F., Giorgi, F., Rauscher, S., Ibrah, S., et al. (2008) A Regional Climate Modeling Study of the Effect of Desert Dust on the West African Monsoon. Journal of Geophysical Research, 113.
[19] Diallo, I., Sylla, M.B., Camara, M. and Gaye, A.T. (2013) Interannual Variability of Rainfall over the Sahel Based on Multiple Regional Climate Models Simulations. Theoretical and Applied Climatology, 113, 351-362.
[20] Gbobaniyi, E., Sarr, A., Sylla, M.B., Diallo, I., Lennard, C., Dosio, A., et al. (2014) Climatology, Annual Cycle and Interannual Variability of Precipitation and Temperature in CORDEX Simulations over West Africa. International Journal of Climatology, 34, 2241-2257.
[21] Klutse, N.A.B., Sylla, M.B., Diallo, I., Sarr, A., Dosio, A., Diedhiou, A., et al. (2015) Daily Characteristics of West African Summer Monsoon Precipitation in CORDEX Simulations. Theoretical and Applied Climatology, in press.
[22] Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R., et al. (2012) Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. Journal of Climate, 25, 6057-6078.
[23] Moufouma-Okia, W. and Rowell, D.P. (2010) Impact of Soil Moisture Initialisation and Lateral Boundary Conditions on Regional Climate Model Simulations of the West African Monsoon. Climate Dynamics, 35, 213-229.
[24] van der Linden, P. and Mitchell, J.F.B., Eds. (2009) ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES Project. Met Office Hadley Centre, Exeter, 160.
[25] Uppala, S., Dee, D., Kobayashi, S., Berrisford, P. and Simmons, A. (2008) Towards a Climate Data Assimilation System: Status Update of ERA-INTERIM. ECMWF Newsletter, 115, 12-18.
[26] Simmons, A., Uppala, S., Dee, D. and Kobayashi, S. (2007) ERA-Interim: New ECMWF Reanalysis Products from 1989 Onwards. ECMWF Newsletter, 110, 25-35.
[27] Sylla, M.B., Diallo, I. and Pal, J.S. (2013) West African Monsoon in State-of-the-Science Regional Climate Models.
[28] Kouadio, K.Y., Aman, A., Ochou, A.D., Ali, K.E. and Assamoi, P.A. (2011) Rainfall Variability Patterns in West Africa: Case of Cote d’Ivoire and Ghana. Journal of Environmental Engineering and Science, 5, 1229-1238.
[29] Kouadio, K.Y., Ali, K.E., Zahiri, E.P. and Assamoi, A.P. (2007) Etude de la prédictibilité de la pluviométrie en Cote d’Ivoire durant la période de Juillet à Septembre. Revue Ivoirienne des Sciences et Technologie, 10, 117-134.
[30] Taylor, K.E. (2001) Summarizing Multiple Aspects of Model Performance in a Single Diagram. Journal of Geophysical Research: Atmospheres, 106, 7183-7192.
[31] Odekunle, T.O. and Eludoyin, A.O. (2008) Sea Surface Temperature Patterns in the Gulf of Guinea: Their Implications for the Spatio-Temporal Variability of Precipitation in West Africa. International Journal of Climatology, 28, 1507-1517.
[32] Adefolalu, D.O. (1983) Monsoon Onset in West Africa Application of Satellite Imagery. Archives for Meteorology, Geophysics, and Bioclimatology, Series B, 32, 219-230.
[33] Paeth, H., Hall, N.M.J., Gaertner, M.A., Alonso, M.D., Moumouni, S., Polcher, J., et al. (2011) Progress in Regional Downscaling of West African Precipitation. Atmospheric Science Letters, 12, 75-82.
[34] Janicot, S. (2009) A Comparison of Indian and African Monsoon Variability at Different Time Scales. Comptes Rendus Geoscience, 341, 575-590.
[35] Karambiri, H., García Galiano, S.G., Giraldo, J.D., Yacouba, H., Ibrahim, B., Barbier, B., et al. (2011) Assessing the Impact of Climate Variability and Climate Change on Runoff in West Africa: The Case of Senegal and Nakambe River Basins. Atmospheric Science Letters, 12, 109-115.
[36] Diallo, I., Sylla, M.B., Camara, M. and Gaye, A.T. (2013) Interannual Variability of Rainfall over the Sahel Based on Multiple Regional Climate Models Simulations. Theoretical and Applied Climatology, 113, 351-362.
[37] Grell, G.A. (1993) Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Monthly Weather Review, 121, 764-787.<0764:PEOAUB>2.0.CO;2
[38] Fritsch, J.M. and Chappell, C.F. (1980) Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part II. Mesoscale Model. Journal of the Atmospheric Sciences, 37, 1734-1762.<1734:NPOCDM>2.0.CO;2
[39] Nordeng, T.E. (1994) Extended Versions of the Convection Parametrization Scheme at ECMWF and Their Impact upon the Mean Climate and Transient Activity of the Model in the Tropics. ECMWF Research Department, Technical Momorandum No. 206, European Centre for Medium Range Weather Forecasts, Reading, UK.
[40] Tiedtke, M. (1989) A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Monthly Weather Review, 117, 1779-1800.<1779:ACMFSF>2.0.CO;2
[41] Kain, J.S. and Fritsch, J.M. (1990) A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. Journal of the Atmospheric Sciences, 47, 2784-2802.<2784:AODEPM>2.0.CO;2
[42] Gregory, D. and Rowntree, P.R. (1990) A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure. Monthly Weather Review, 118, 1483-1506.<1483:AMFCSW>2.0.CO;2
[43] Gregory, D. and Allen, S. (1991) The Effect of Convective Scale Downdrafts upon NWP and Climate Simulations. Proceedings of the Ninth Conference on Numerical Weather Prediction, Denver, 14-18 October 1991, 122-123.
[44] Kiehl, J.T., Hack, J.J., Bonan, G.B., Boville, B.A. and Briegleb, B.P. (1996) Description of the NCAR Community Climate Model (CCM3). Technical Note, National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.
[45] Giorgetta, M.A. and Wild, M. (1995) The Water Vapour Continuum and Its Representation in ECHAM4.
[46] Morcrette, J.-J. (1991) Radiation and Cloud Radiative Properties in the European Centre for Medium Range Weather Forecasts Forecasting System. Journal of Geophysical Research: Atmospheres, 96, 9121-9132.
[47] Fouquart, Y. and Bonnel, B. (1980) Computations of Solar Heating of the Earth’s Atmosphere—A New Parameterization. Beitrage zur Physik der Atmosphare, 53, 35-62.
[48] Savijarvi, H. (1990) Fast Radiation Parameterization Schemes for Mesoscale and Short-Range Forecast Models. Journal of Applied Meteorology, 29, 437-447.<0437:FRPSFM>2.0.CO;2
[49] Sass, B.H., Rontu, L. and Raisanen, P. (1994) HIRLAM-2 Radiation Scheme: Documentation and Tests. HIRLAM.
[50] Edwards, J.M. and Slingo, A. (1996) Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large-Scale Model. Quarterly Journal of the Royal Meteorological Society, 122, 689-719.
[51] Holtslag, A.A.M., De Bruijn, E.I.F. and Pan, H.L. (1990) A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting. Monthly Weather Review, 118, 1561-1575.<1561:AHRAMT>2.0.CO;2
[52] Louis, J.-F. (1979) A Parametric Model of Vertical Eddy Fluxes in the Atmosphere. Boundary-Layer Meteorology, 17, 187-202.
[53] Cuxart, J., Bougeault, P. and Redelsperger, J.-L. (2000) A Turbulence Scheme Allowing for Mesoscale and Large-Eddy Simulations. Quarterly Journal of the Royal Meteorological Society, 126, 1-30.
[54] Wilson, C.A. (1992) Vertical Diffusion. Unified Model Documentation Paper, 4.
[55] Brinkop, S. and Roeckner, E. (1995) Sensitivity of a General Circulation Model to Parameterizations of Cloud-Turbulence Interactions in the Atmospheric Boundary Layer. Tellus A, 47, 197-220.
[56] Pal, J.S., Small, E.E. and Eltahir, E.A. (2000) Simulation of Regional-Scale Water and Energy Budgets: Representation of Subgrid Cloud and Precipitation Processes within RegCM. Journal of Geophysical Research: Atmospheres, 105, 29579-29594.
[57] Sundqvist, H. (1978) A Parameterization Scheme for Non-Convective Condensation including Prediction of Cloud Water Content. Quarterly Journal of the Royal Meteorological Society, 104, 677-690.
[58] Rasch, P.J. and Kristjánsson, J.E. (1998) A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations. Journal of Climate, 11, 1587-1614.<1587:ACOTCM>2.0.CO;2
[59] Smith, R.N.B. (1990) A Scheme for Predicting Layer Clouds and Their Water Content in a General Circulation Model. Quarterly Journal of the Royal Meteorological Society, 116, 435-460.
[60] Jones, R.G., Murphy, J.M. and Noguer, M. (1995) Simulation of Climate Change over Europe Using a Nested Regional-Climate Model. I: Assessment of Control Climate, including Sensitivity to Location of Lateral Boundaries. Quarterly Journal of the Royal Meteorological Society, 121, 1413-1449.
[61] Dickinson, R.E., Kennedy, P.J. and Henderson-Sellers, A. (1993) Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. National Center for Atmospheric Research, Climate and Global Dynamics Division.
[62] Dumenil, L. (1992) A Rainfall-Runoff Scheme for Use in the Hamburg Climate Model. In: O’Kane, J.P., Ed., Advances in Theoretical Hydrology: A Tribute to James Dooge, Elsevier, Amsterdam, 129-157.
[63] van den Hurk, B.J., Viterbo, P., Beljaars, A.C.M. and Betts, A.K. (2000) Offline Validation of the ERA40 Surface Scheme, ECMWF, Reading.
[64] Samuelsson, P., Gollvik, S. and Ullerstig, A. (2006) The Land-Surface Scheme of the Rossby Centre Regional Atmospheric Climate Model (RCA3), SMHI.!meteorologi_122%5B1%5D.pdf
[65] Essery, R.L.H., Best, M.J., Betts, R.A., Cox, P.M. and Taylor, C.M. (2003) Explicit Representation of Subgrid Heterogeneity in a GCM Land Surface Scheme. Journal of Hydrometeorology, 4, 530-543.<0530:EROSHI>2.0.CO;2
[66] Dümenil, L. and Todini, E. (1992) A Rainfall Runoff Scheme for Use in the Hamburg Climate Model. In: O’Kane, J.P., Ed., Advances in Theoretical Hydrology: A Tribute to James Dooge, European Geophysical Society Series on Hydrological Sciences, 129-157.
[67] Pal, J.S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Rauscher, S.A., et al. (2007) Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society, 88, 1395-1409.
[68] Christensen, O.B., Drews, M., Christensen, J.H., Dethloff, K., Ketelsen, K., Hebestadt, I., et al. (2006) The HIRHAM Regional Climate Model, Version 5 (β). Techical Rep., 6-17.
[69] Van Meijgaard, E., Van Ulft, L.H., Van de Berg, W.J., Bosveld, F.C., Van den Hurk, B., Lenderink, G., et al. (2008) The KNMI Regional Atmospheric Climate Model RACMO. Version 2.1, Koninklijk Nederlands Meteorologisch Instituut.
[70] Samuelsson, P., Jones, C.G., Willén, U., Ullerstig, A., Gollvik, S., Hansson, U., et al. (2011) The Rossby Centre Regional Climate Model RCA3: Model Description and Performance. Tellus A, 63, 4-23.
[71] Jones, R., Noguer, M., Hassell, D., Hudson, D., Wilson, S., Jenkins, G., et al. (2004) Generating High Resolution Climate Change Scenarios Using PRECIS, Ruth Taylor (Hadley Centre for Climate Prediction and Research, UK), Exeter.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.