[1]
|
Friedman, M. and Savage, L.J. (1948) The Utility Analysis of Choices Involving Risk. The Journal of Political Economy, 56, 279-304. http://dx.doi.org/10.1086/256692
|
[2]
|
Weirich, P. (2008) Utility Maximization Generalized. Journal of Moral Philosophy, 5, 282-299.
http://dx.doi.org/10.1163/174552408X329019
|
[3]
|
Ananda, J. and Herath, G. (2005) Evaluating Public Risk Preferences in Forest Land-Use Choices Using Multi-Attribute Utility Theory. Ecological Economics, 55, 408-419. http://dx.doi.org/10.1016/j.ecolecon.2004.12.015
|
[4]
|
Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423.
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
|
[5]
|
Ormos, M. and Zibriczky, D. (2014) Entropy-Based Financial Asset Pricing. PLoS ONE, 9, e115742.
|
[6]
|
Zhou, R., Cai, R. and Tong, G. (2013) Applications of Entropy in Finance: A Review. Entropy, 2013, 4909-4931.
http://dx.doi.org/10.3390/e15114909
|
[7]
|
Casquilho, J.P. (2014) Discussion of an Expected Utility and Weighted Entropy Framework. Natural Science, 6, 545-551. http://dx.doi.org/10.4236/ns.2014.67054
|
[8]
|
Winkler, R.L. and Murphy, A.H. (1970) Nonlinear Utility and the Probability Score. Journal of Applied Meteorology, 9, 143-148. http://dx.doi.org/10.1175/1520-0450(1970)009<0143:NUATPS>2.0.CO;2
|
[9]
|
Yang, J. and Qiu, W. (2005) A Measure of Risk and a Decision-Making Model Based on Expected Utility and Entropy. European Journal of Operational Research, 164, 792-799. http://dx.doi.org/10.1016/j.ejor.2004.01.031
|
[10]
|
Yang, J. and Qiu, W. (2014) Normalized Expected Utility-Entropy Measure of Risk. Entropy, 2014, 3590-3604.
http://dx.doi.org/10.3390/e16073590
|
[11]
|
Bernoulli, D. (1738/1954) Exposition of a New Theory on the Measurement of Risk. Econometrica, 22, 23-36.
http://dx.doi.org/10.2307/1909829
|
[12]
|
Von Neumann, J. and Morgenstern, O. (1953) Theory of Games and Economic Behavior. 3rd Edition, Princeton University Press, Princeton.
|
[13]
|
Gilboa, I. (2009) Theory of Decision under Uncertainty. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511840203
|
[14]
|
Alchian, A.A. (1953) The Meaning of Utility Measurement. American Economic Review, 43, 26-50.
http://www.jstor.org/stable/1810289
|
[15]
|
Machina, M.J. (1987) Choice under Uncertainty: Problems Solved and Unsolved. The Journal of Economic Perspectives, 1, 121-154. http://dx.doi.org/10.1257/jep.1.1.121
|
[16]
|
Ramsey, F.P. (1931) Truth and Probability. In: Braithwaite, R.B., Ed., The Foundations of Mathematics and other Logical Essays, Harcourt, Brace and Company, New York, 156-198.
|
[17]
|
Kahneman, D. and Tversky, A. (1979) Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47, 263-291. http://dx.doi.org/10.2307/1914185
|
[18]
|
Machina, M.J. (1982) “Expected Utility” Analysis without the Independence Axiom. Econometrica, 50, 277-323.
http://dx.doi.org/10.2307/1912631
|
[19]
|
Baron, D.P. (1977) On the Utility Theoretic Foundations of Mean-Variance Analysis. The Journal of Finance, 32, 1683-1697. http://dx.doi.org/10.1111/j.1540-6261.1977.tb03363.x
|
[20]
|
Kroll, Y., Levy, H. and Markowitz, H.M. (1884) Mean-Variance versus Direct Utility Maximization. The Journal of Finance, 39, 47-61. http://dx.doi.org/10.1111/j.1540-6261.1984.tb03859.x
|
[21]
|
Frosini, B.V. (2014) A General Criterion of Choice, with Discussion of Borch Paradox. Theoretical Economics Letters, 4, 691-696. http://dx.doi.org/10.4236/tel.2014.48087
|
[22]
|
Machina, M.J. (1989) Dynamic Consistency and Non-Expected Utility Models of Choice under Uncertainty. Journal of Economic Literature, 26, 1622-1668. http://www.jstor.org/stable/2727025
|
[23]
|
Pratt, J.W. (1964) Risk Aversion in the Small and in the Large. Econometrica, 32, 122-136.
http://dx.doi.org/10.2307/1913738
|
[24]
|
Baillon, A., Driesen, B. and Wakker, P.P. (2012) Relative Concave Utility for Risk and Ambiguity. Games and Economic Behavior, 75, 481-489. http://dx.doi.org/10.1016/j.geb.2012.01.006
|
[25]
|
Gosio, C., Lari, E.C. and Ravera, M. (2014) Optimal Expected Utility of Wealth for Two Dependent Classes of Insurance Business. Theoretical Economics Letters, 3, 90-95. http://dx.doi.org/10.4236/tel.2013.32015
|
[26]
|
Shaw, W.D. and Woodward, R.T. (2008) Why Environmental and Resource Economists Should Care about Non-Expected Utility Models. Resource and Energy Economics, 30, 66-89. http://dx.doi.org/10.1016/j.reseneeco.2007.05.001
|
[27]
|
Edwards, W. (1962) Utility, Subjective Probability, Their Interaction and Variance Preferences. Journal of Conflict Resolution, 6, 42-51. http://dx.doi.org/10.1177/002200276200600106
|
[28]
|
Starmer, C. (2000) Developments in Non-Expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk. Journal of Economic Literature, 38, 332-382. http://dx.doi.org/10.1257/jel.38.2.332
|
[29]
|
Wu, G. and Gonzalez, R. (1999) Nonlinear Decision Weights in Choice under Uncertainty. Management Science, 45, 74-85. http://dx.doi.org/10.1287/mnsc.45.1.74
|
[30]
|
Roberts, D.C., Boyer, T.A. and Lusk, J.L (2008) Preferences for Environmental Quality under Uncertainty. Ecological Economics, 66, 584-593. http://dx.doi.org/10.1016/j.ecolecon.2008.05.010
|
[31]
|
Hey, J.D. and Orme, C. (1994) Investigating Generalizations of Expected Utility Theory Using Experimental Data. Econometrica, 62, 1291-1326. http://dx.doi.org/10.2307/2951750
|
[32]
|
Chanel, O. and Chichilnisky, G. (2013) Valuing Life: Experimental Evidence Using Sensitivity to Rare Events. Ecological Economics, 85, 198-205. http://dx.doi.org/10.1016/j.ecolecon.2012.03.004
|
[33]
|
Belis, M. and Guiasu, S. (1968) A Quantitative-Qualitative Measure of Information in Cybernetic Systems (Corresp.). IEEE Transactions on Information Theory, 14, 593-594. http://dx.doi.org/10.1109/TIT.1968.1054185
|
[34]
|
Guiasu, S. (1971) Weighted Entropy. Reports on Mathematical Physics, 2, 165-179.
http://dx.doi.org/10.1016/0034-4877(71)90002-4
|
[35]
|
Bouchon, B. (1976) Useful Information and Questionnaires. Information and Control, 32, 368-378.
http://dx.doi.org/10.1016/S0019-9958(76)90279-5
|
[36]
|
Nawrocki, D.N. and Harding, W.H. (1986) State-Value Weighted Entropy as a Measure of Investment Risk. Applied Economics, 18, 411-419. http://dx.doi.org/10.1080/00036848600000038
|
[37]
|
Bhattacharyya, R., Chatterjee, A. and Kar, S. (2013) Uncertainty Theory-Based Multiple Objective Mean-Entropy-Skewness Stock Portfolio Selection Model with Transaction Costs. Uncertainty Analysis and Applications, 1, 16.
http://dx.doi.org/10.1186/2195-5468-1-16
|
[38]
|
Ormos, M. and Zibriczky, D. (2013) Asset Pricing and Entropy. Proceedings of the 10th International Scientific Conference in European Financial Systems, Masaryk University, Brno, 241-248.
http://is.muni.cz/do/econ/soubory/konference/efs/Sbornik_2013.pdf#page=241
|
[39]
|
Patsakis, C., Mermigas, D., Pirounias, S. and Chondrokoukis, G. (2013) The Role of Weighted Entropy in Security Quantification. International Journal of Information and Electronics Engineering, 3, 156-159.
http://dx.doi.org/10.7763/IJIEE.2013.V3.288
|
[40]
|
Nager, R. and Singh, R.P. (2013) Application of Information Theoretic Divergence Measures—Forecasting Profit Maximization in Share Market. Journal of Mathematics, Statistics and Operations Research, 2, 45-54.
http://dl6.globalstf.org/index.php/jmsor/article/viewFile/338/341
|
[41]
|
Suhov, Y. and Sekeh, S.Y. (2014) Simple Inequalities for Weighted Entropies. http://arxiv.org/pdf/1409.4102.pdf
|
[42]
|
Aggarwal, N.L. and Picard, C.-F. (1978) Functional Equations and Information Measures with Preference. Kybernetika, 14, 174-181. http://dml.cz/dmlcz/125412
|
[43]
|
Sharma, B.D., Mitter, J. and Mohan, M (1978) On Measures of “Useful” Information. Information and Control, 39, 323-336. http://dx.doi.org/10.1016/S0019-9958(78)90671-X
|
[44]
|
Havrda, J. and Charvát, F. (1967) Quantification Method of Classification Processes. Concept of Structural α-Entropy. Kybernetika, 3, 30-35. http://dml.cz/dmlcz/125526
|
[45]
|
Guiasu, R.C. and Guiasu, S. (2003) Conditional and Weighted Measures of Ecological Diversity. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11, 283-300. http://dx.doi.org/10.1142/S0218488503002089
|
[46]
|
Anscombe, F.J. and Aumann, R.J. (1963) A Definition of Subjective Probability. The Annals of Mathematical Statistics, 34, 199-205. http://dx.doi.org/10.1214/aoms/1177704255
|
[47]
|
Guiasu, R.C. and Guiasu, S. (2012) The Weighted Gini-Simpson Index: Revitalizing an Old Index of Biodiversity. International Journal of Ecology, 2012, Article ID: 478728. http://dx.doi.org/10.1155/2012/478728
|
[48]
|
Guiasu, R.C. and Guiasu, S. (2014) Weighted Gini-Simpson Quadratic Index of Biodiversity for Interdependent Species. Natural Science, 6, 455-466. http://dx.doi.org/10.4236/ns.2014.67044
|
[49]
|
Casquilho, J.A.P. (1999) Ecomosaico: índices para o Diagnóstico de Proporcoes de Composicao. Ph.D. Thesis, Instituto Superior de Agronomia, Universidade Técnica de Lisboa. http://hdl.handle.net/10400.5/6932
|
[50]
|
Purcaru, I. (2009) Optimal Diversification in Allocation Problems. Anfiteatru Economic, 26, 494-502.
http://core.ac.uk/download/pdf/6283822.pdf
|
[51]
|
Casquilho, J.P. (2009) Complex Number Valuation of Habitats and Information Index of Landscape Mosaic. Silva Lusitana, 17, 171-180. http://www.scielo.oces.mctes.pt/pdf/slu/v17n2/v17n2a03.pdf
|
[52]
|
Casquilho, J.P. (2011) Ecomosaic Composition and Expected Utility Indices. Silva Lusitana, 19, 55-65.
http://www.scielo.gpeari.mctes.pt/pdf/slu/v19n1/v19n1a05.pdf
|
[53]
|
Jaynes, E.T. (1957) Information Theory and Statistical Mechanics. The Physical Review, 106, 620-630.
http://dx.doi.org/10.1103/PhysRev.106.620
|
[54]
|
Schmeidler, D. (1989) Subjective Probability and Expected Utility without Additivity. Econometrica, 57, 571-587.
http://dx.doi.org/10.2307/1911053
|
[55]
|
Casquilho, J.P. (2010) Landscape Mosaic Composition and Mean Contributive Value Index. Silva Lusitana, 18, 197-203. http://www.scielo.gpeari.mctes.pt/pdf/slu/v18n2/v18n2a06.pdf
|
[56]
|
Yu, J.-R, Lee, W.-Y. and Chiou, W.-J.P. (2014) Diversified Portfolios with Different Entropy Measures. Applied Mathematics and Computation, 241, 47-63. http://dx.doi.org/10.1016/j.amc.2014.04.006
|
[57]
|
Casquilho, J.A.P. (2012) Ecomosaico Florestal: Composicao, índices de Informacao e Abducao. Revista árvore, 36, 321-329. http://dx.doi.org/10.1590/S0100-67622012000200013
|