Heat Pipe for Aerospace Applications—An Overview
K. N. Shukla*
PRERANA CGHS Ltd., Gurgaon, India.
DOI: 10.4236/jectc.2015.51001   PDF    HTML   XML   15,685 Downloads   23,320 Views   Citations

Abstract

The paper presents an overview of heat pipes, especially those used in different space missions. Historical perspectives, principles of operations, types of heat pipes are discussed. Several factors have contributed to the science and technology of the present state-of-Art heat pipe leading to the development of loop heat pipes, micro and miniature heat pipes and micro loop heat pipes. The paper highlights the advancement of heat pipe for hypersonic cruise vehicles, loop heat pipes with higher conductance in 10 K range, heat pipe switches for temperature control of the spacecraft electronics.

Share and Cite:

Shukla, K. (2015) Heat Pipe for Aerospace Applications—An Overview. Journal of Electronics Cooling and Thermal Control, 5, 1-14. doi: 10.4236/jectc.2015.51001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Grover, G.M. (1966) Evaporation-Condensation Heat Transfer Device. US patent No. 3229759.
[2] Gaugler, R. (1944) Heat Transfer Devices. US Patent No. 2350348.
[3] Zemlianoy, P. and Combes, C. (1996) Thermal Control of Space Electronics. Electronics Cooling, September 1.
[4] McIntosh, R., Ollendorf, S. and Harwell, W. (1976) The International Heat Pipe Experiment. Proceedings of International Heat Pipe Conference, Bolgana, 589-592.
[5] Kirkpatrick, J.P. and Brennan, P.J. (1976) Long Term Performance of the Advanced Thermal Control Experiment. Proceedings of International Heat Pipe Conference, Bolgana, 629-646.
[6] Rankin, J.G. (1984) Integration and Flight Demonstration of a High Capacity Monogroove Heat Pipe Radiator. AIAA 19th Thermophysics Conference, Snowmass, AIAA Paper No. 84-1716.
[7] Brown, R., Gustafson, E., Gisondo, F. and Harwell, W. (1990) Performance Evaluation of the Grumman Prototype Space Erectable Radiator System. AIAA Paper No. 90-1766.
[8] Brown, R., Kosson, R. and Ungar, E. (1991) Design of the SHARE II Mono Groove Heat Pipe. Proceedings of AIAA 26th Thermophysics Conference, Honolulu, AIAA Paper No. 91-1359.
[9] Morgownik, A. and Savage, C. (1987) Design Aspect of a Deployable 10KW Heat Pipe Radiators. Proceedings of the 6th International Heat Pipe Conference, Grenoble, 25-29 May 1987, 351-356.
[10] Amidieu, M., Moscheti, B. and Taby, M. (1987) Development of a Space Deployable Radiator using Heat Pipes. Proceedings of the 6th International Heat Pipe Conference, Grenoble, 25-29 May 1987, 380-385.
[11] Peck, S. and Fleischman, G. (1987) Lightweight Heat Pipe Panels for Space Radiators. Proceedings of the 6th International Heat Pipe Conference, Grenoble, 25-29 May 1987, 36-367.
[12] Brennan, P.J., Thienel, L., Swanson, T. and Morgan, M. (1993) Flight Data for the Cryogenic Heat Pipe (CRYOHP) Experiment, AIAA 93-2735.
[13] Schulze, T., Sodtke, C., Stephan, P. and Gambaryan-Rosisman, T. (2007) Performance of Heat Pipe Evaporation for Space Applications with Combined Re-Entrant and Microgrooves. Proceedings of the 14th International Heat Pipe Conference, Florianopolis, 22-27 April 2007.
[14] Swanson, T.D. (2007) Thermal Control Techniques for the New Age of Space Exploration. Proceedings of the 14th International Heat Pipe Conference, Florianopolis, 22-27 April 2007.
[15] Barthelemy, R., Jacobson, D. and Rabe, D. (1978) Heat Pipe Mirrors for High Power Lasers. Proceedings of the 3rd International Heat Pipe Conference, Palo Alto, 22-24 May 1978, Paper No. 78-391.
http://dx.doi.org/10.2514/6.1978-391
[16] Williams, R. (1978) Investigation of a Cryogenic Thermal Diode. Proceedings of the 3rd International Heat Pipe Conference, Palo Alto, 22-24 May 1978, Paper No. 78-391.
http://dx.doi.org/10.2514/6.1978-417
[17] Thieme, L.G. and Schreiber, J.G. (2003) NASA GRC Stirling Technology Development Overview. AIP Conference Proceedings, 654, 613-660.
http://dx.doi.org/10.1063/1.1541346
[18] Tarau, C. and Anderson, W.G. (2010) Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems, Design and Experimental Results. Proceedings of the 8th Annual International Energy Conversion Engineering Conference, Nashville, 25-28 July 2010.
[19] Glass, D.E., Camarda, C.J., Mennigen, M.A., Sena, J.T. and Reid, R.R. (1999) Fabrication and Testing of a Leading Edge shaped Heat Pipe. Journal of Spacecraft and Rockets, 36, 921-923.
[20] Steeves, O.A., He, M.Y., Kasen, S.D., Valdevit, L. and Wadley, H.N.G. (2009) Feasibility of Metallic Structural Heat Pipes as Sharp Leading Edges for Hypersonic Vehicles. ASME Journal of Applied Mechanics, 76, Article ID: 031014.
http://dx.doi.org/10.1115/1.3086440
[21] WWW.THERMACORE.COM/ Press Release April 29, 2014.
[22] Chatterjee, A., Wayner, P.C., Plawsky, J.L., Chao, D.F., Sicker, R.J., Lorik, T., et al. (2011) The Constrained Vapor Bubble Fin Heat Pipe in Microgravity. Industrial Engineering Chemistry Research, 50, 8917-8926.
http://dx.doi.org/10.1021/ie102072m
[23] Fahgiri, A. (2014) Heat Pipes, Review, Opportunities and Challenges. Frontiers in Heat Pipes (FHP), 5, 1-48.
http://dx.doi.org/10.5098/fhp.5.1
[24] Mochizuki, M., Nguyen, T., Mashiko, K., Saito, Y., Nguyen, T. and Wuttijumnong, V. (2011) A Review of Heat Pipe Application Including New Opportunities. Frontiers in Heat Pipes (FHP), 2, Article ID: 01300.
[25] Mock, P.R., Marcus, D.B. and Edelman, E.A. (1975) Communication Technology Satellite: A Variable Conductance Heat Pipe Application. Journal of Spacecraft and Rockets, 12, 750-753.
[26] Marcus, B.D. and Fleischman, G.L. (1970) Steady-State and Transient Performance of Hot Reservoir Gas Controlled Heat Pipes, ASME Paper 70-HT/SPT-11.
[27] Edward, D.K. and Marcus, B.D. (1972) Heat and Mass Transfer in the Vicinity of the Vapor-Gas Front in a Gas-Loaded Heat Pipe. Journal of Heat Transfer, 9, 155-162.
http://dx.doi.org/10.1115/1.3449887
[28] Rohani, A.R. and Tien, C.L. (1977) Steady Two-Dimensional Heat and Mass Transfer in the Vapor-Gs Region of a Gas Loaded Heat Pipe. Journal of Heat Transfer, 95, 377-382.
http://dx.doi.org/10.1115/1.3450067
[29] Sun, K.H. and Tien, C.L. (1975) Thermal Performance Characteristic s of Heat Pipe. International Journal of Heat Mass Transfer, 18, 363-380.
http://dx.doi.org/10.1016/0017-9310(75)90026-5
[30] Shukla, K.N. (1981) Transient Response of a Gas Controlled Heat Pipe. AIAA Journal, 19, 1063-1070.
http://dx.doi.org/10.2514/3.7842
[31] Shukla, K.N. and Sankara Rao, K. (1983) Heat and Mass Transfer in the Vapor Gas Region of a Gas-Loaded Heat Pipe. ZAMM—Journal of Applied Mathematics and Mechanics, 63, 575-580.
[32] Shukla, K.N. (1983) Thermal Performance of a Gas-Loaded Heat Pipe. Proceedings of the Second Asian Congress of Fluid Mechanics, Beijing, 25-29 October 1983, 405.
[33] Harley, C. and Faghiri, A. (1994) Transient Two-Dimensional Gas-Loaded Heat Pipe Analysis. ASME, Journal of Heat Transfer, 116, 716-723.
http://dx.doi.org/10.2514/3.7842
[34] Gray, V.H. (1969) The Rotating Heat Pipe—A Wickless, Hollow Shaft for Transferring High Heat Fluxes. Proceedings of the ASME/AIChE Heat Transfer Conference, Minneapolis, August 3-6 1969, 1-5.
[35] Shukla, K.N., Solomon, A.B. and Pillai, B.C. (2009) Experimental Studies of Rotating Heat Pipes. Heat Transfer-Asian Research, 38, 475-484.
[36] Peterson, G.P. and Compagua, C. (1987) Review of Cryogenic Heat Pipes in Spacecraft Applications. Journal of Spacecraft and Rockets, 24, 99-100.
[37] Charlton, M.C. and Bowman, W.I. (1994) A Mathematical Model to Predict the Transient Temperature Profile of a Cryogenic Heat Pipe during Startup. Journal of Spacecraft and Rockets, 31, 914-916.
[38] Conto, P., Ochterbeck, J.M. and Montelli, M.B.H. (2005) Analysis of Supercritical Startup of Cryogenic Heat Pipes with Parasitic Heat Loads. Journal of Thermophysics and Heat Transfer, 19, 497-508.
[39] Bughy, D.C., Cepeda-Rizo, J. and Rodriguez, J.L. (2011) Thermal Switching Cryogenic Heat Pipe. In: Miller, S.D. and Roes Jr., R.G., Eds., International Cryocooler Conference—Cryocoolers 16, ICC Press, Boulder, 557-566.
[40] Wu, X.P., Mochizuki, M., Nguyen, T., Saito, Y., Wuttijumnong, V., Ghisoiu, H., Kumthonkittikul, V., Sukkasaem, P., Nimitkiatklai, P. and Kiyooka, F. (2007) Low Profile High Performance Vapor Chamber Heat Sinks for Cooling High Density Blade Servers, Semi-Therm 2007.
[41] Xiao, B. and Faghiri, A. (2008) A Three Dimensional Thermal Fluid Analysis of Flat Heat Pipes. International Journal of Heat and Mass Transfer, 51, 3113-3126.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.08.023
[42] Shukla, K.N., Solomon, A.B. and Pillai, B.C. (2012) Thermal Performance of Vapor Chamber with Nanofluids. Frontiers in Heat Pipes (FHP), 3, Article ID: 033004.
[43] Maydanik, Y.F. (2005) Loop Heat Pipes. Applied Thermal Engineering, 25, 635-657.
http://dx.doi.org/10.1016/j.applthermaleng.2004.07.010
[44] Ku, J. (1999) Operating Characteristics of Loop Heat Pipes. Proceedings of the 29th International Conference on Environmental System, Denver, 1-15 July 1999, Paper No. 1999-01-2007.
[45] Chemyshea, M.A., Maydanik, Y.F. and Ochterbeck, J.M. (2008) Heat Transfer Investigation in Evaporator of Loop Heat Pipe during Startup. Journal of Thermophysics and Heat Transfer, 22, 617-622.
[46] Chemyshea, M.A. and Maydanik, Y.F. (2009) Heat and Mass Transfer in Evaporator of Loop Heat Pipe. Journal of Thermophysics and Heat Transfer, 23, 725-731.
[47] Shukla, K.N. (2008) Thermo Fluid Dynamics of Loop Heat Pipe Operation. International Communications in Heat and Mass Transfer, 35, 916-920.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.04.020
[48] Ku, J., Ottenstein, L., Douglas, L., Pauken, M. and Nirur, G. (2010) Miniature Loop Heat Pipe with Multi Evaporators for Thermal Control of Small Spacecraft. The American Institute of Aeronautics and Astronautics, AIAA Paper No. 183.
[49] Ku, J., Paiva, K. and Mantelli, M. (2011) Loop Heat Pipe Transient Behavior Using Heat Source Temperature for Set Point Control with Thermoelectric Converter on Reservoir. NASA—Goddard Space Flight Center, Retrieved 14 September 2011.
[50] Okutani, S., Nagano, H., Okazaki, S., Ogawe, H. and Nagai, H. (2014) Principles and Prospects for Micro Heat Pipes. Journal of Electronic Cooling and Thermal Control, 4, Article ID: 43507.
[51] Cotter, T.P. (1984) Principles and Prospects for Micro Heat Pipes. Proceedings of the 5th International Heat Pipe Conference, Tsukuba, 14-18 May 1984, 328-335.
[52] Peterson, G.P. (1992) Overview of Micro Heat Pipe Research and Development. Applied Mechanics Reviews, 45, 175-189.
http://dx.doi.org/10.1115/1.311975
[53] Hopkins, R., Faghri, A. and Khrustalev, D. (1999) Flat Miniature Heat Pipes with Micro Capillary Grooves. Journal of Heat Transfer, 121,102-109.
http://dx.doi.org/10.1115/1.2825922
[54] Shukla, K.N. (2009) Heat Transfer Limitation of a Micro Heat Pipe. ASME Journal of Electronic Packaging, 131, Article ID: 024502.
http://dx.doi.org/10.1115/1.3103970
[55] Gerner, F.M., Longtin, J.P., Henderson, H.T., Hsieh, W.M., Ramdas, P. and Chang, W.S. (1992) Flow Limitations in Micro Heat Pipes. Proceedings of the 28th ASME National Heat Transfer Conference, San Diego, 9-12 August 1992.
[56] Shukla, K.N., Solomon, A.B., Pillai, B.C. and Ibrahim, M. (2010) Thermal Performance of Cylindrical Heat Pipe Using Nanofluids. Journal of Thermophysics and Heat Transfer, 24, 796-802.
http://dx.doi.org/10.2514/1.48749
[57] Shukla, K.N., Solomon, A.B., Pillai, B.C., Jacob Ruba Singh, B. and Kumar, S.S. (2012) Thermal Performance of Heat Pipe with Suspended Nano-Particles. Heat and Mass Transfer, 48, 1913-1920.
http://dx.doi.org/10.1007/s00231-012-1028-4
[58] Wang, X., Xu, X. and Choi, S.U.S. (1999) Thermal Conductivity of Nanofluid Mixture. Journal of Thermophysics and Heat Transfer, 13, 474-480.
http://dx.doi.org/10.2514/2.6486
[59] Li, Y.Y., LV, L.C. and Liu, Z.H. (2010) Influence of Nanofluids on the Operation Characteristics of Small Capillary Pumped Loop. Energy Conversion and Management, 51, 2312-2320.
http://dx.doi.org/10.1016/j.enconman.2010.04.004
[60] Hill, S.A., Kostyk, C., Motil, B., Notardonato, W., Rickman, S. and Swanson, T. (2012) Thermal Management Systems Roadmap Technology Area-14, NASA—2012.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.