[1]
|
Grover, G.M. (1966) Evaporation-Condensation Heat Transfer Device. US patent No. 3229759.
|
[2]
|
Gaugler, R. (1944) Heat Transfer Devices. US Patent No. 2350348.
|
[3]
|
Zemlianoy, P. and Combes, C. (1996) Thermal Control of Space Electronics. Electronics Cooling, September 1.
|
[4]
|
McIntosh, R., Ollendorf, S. and Harwell, W. (1976) The International Heat Pipe Experiment. Proceedings of International Heat Pipe Conference, Bolgana, 589-592.
|
[5]
|
Kirkpatrick, J.P. and Brennan, P.J. (1976) Long Term Performance of the Advanced Thermal Control Experiment. Proceedings of International Heat Pipe Conference, Bolgana, 629-646.
|
[6]
|
Rankin, J.G. (1984) Integration and Flight Demonstration of a High Capacity Monogroove Heat Pipe Radiator. AIAA 19th Thermophysics Conference, Snowmass, AIAA Paper No. 84-1716.
|
[7]
|
Brown, R., Gustafson, E., Gisondo, F. and Harwell, W. (1990) Performance Evaluation of the Grumman Prototype Space Erectable Radiator System. AIAA Paper No. 90-1766.
|
[8]
|
Brown, R., Kosson, R. and Ungar, E. (1991) Design of the SHARE II Mono Groove Heat Pipe. Proceedings of AIAA 26th Thermophysics Conference, Honolulu, AIAA Paper No. 91-1359.
|
[9]
|
Morgownik, A. and Savage, C. (1987) Design Aspect of a Deployable 10KW Heat Pipe Radiators. Proceedings of the 6th International Heat Pipe Conference, Grenoble, 25-29 May 1987, 351-356.
|
[10]
|
Amidieu, M., Moscheti, B. and Taby, M. (1987) Development of a Space Deployable Radiator using Heat Pipes. Proceedings of the 6th International Heat Pipe Conference, Grenoble, 25-29 May 1987, 380-385.
|
[11]
|
Peck, S. and Fleischman, G. (1987) Lightweight Heat Pipe Panels for Space Radiators. Proceedings of the 6th International Heat Pipe Conference, Grenoble, 25-29 May 1987, 36-367.
|
[12]
|
Brennan, P.J., Thienel, L., Swanson, T. and Morgan, M. (1993) Flight Data for the Cryogenic Heat Pipe (CRYOHP) Experiment, AIAA 93-2735.
|
[13]
|
Schulze, T., Sodtke, C., Stephan, P. and Gambaryan-Rosisman, T. (2007) Performance of Heat Pipe Evaporation for Space Applications with Combined Re-Entrant and Microgrooves. Proceedings of the 14th International Heat Pipe Conference, Florianopolis, 22-27 April 2007.
|
[14]
|
Swanson, T.D. (2007) Thermal Control Techniques for the New Age of Space Exploration. Proceedings of the 14th International Heat Pipe Conference, Florianopolis, 22-27 April 2007.
|
[15]
|
Barthelemy, R., Jacobson, D. and Rabe, D. (1978) Heat Pipe Mirrors for High Power Lasers. Proceedings of the 3rd International Heat Pipe Conference, Palo Alto, 22-24 May 1978, Paper No. 78-391. http://dx.doi.org/10.2514/6.1978-391
|
[16]
|
Williams, R. (1978) Investigation of a Cryogenic Thermal Diode. Proceedings of the 3rd International Heat Pipe Conference, Palo Alto, 22-24 May 1978, Paper No. 78-391. http://dx.doi.org/10.2514/6.1978-417
|
[17]
|
Thieme, L.G. and Schreiber, J.G. (2003) NASA GRC Stirling Technology Development Overview. AIP Conference Proceedings, 654, 613-660. http://dx.doi.org/10.1063/1.1541346
|
[18]
|
Tarau, C. and Anderson, W.G. (2010) Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems, Design and Experimental Results. Proceedings of the 8th Annual International Energy Conversion Engineering Conference, Nashville, 25-28 July 2010.
|
[19]
|
Glass, D.E., Camarda, C.J., Mennigen, M.A., Sena, J.T. and Reid, R.R. (1999) Fabrication and Testing of a Leading Edge shaped Heat Pipe. Journal of Spacecraft and Rockets, 36, 921-923.
|
[20]
|
Steeves, O.A., He, M.Y., Kasen, S.D., Valdevit, L. and Wadley, H.N.G. (2009) Feasibility of Metallic Structural Heat Pipes as Sharp Leading Edges for Hypersonic Vehicles. ASME Journal of Applied Mechanics, 76, Article ID: 031014. http://dx.doi.org/10.1115/1.3086440
|
[21]
|
WWW.THERMACORE.COM/ Press Release April 29, 2014.
|
[22]
|
Chatterjee, A., Wayner, P.C., Plawsky, J.L., Chao, D.F., Sicker, R.J., Lorik, T., et al. (2011) The Constrained Vapor Bubble Fin Heat Pipe in Microgravity. Industrial Engineering Chemistry Research, 50, 8917-8926. http://dx.doi.org/10.1021/ie102072m
|
[23]
|
Fahgiri, A. (2014) Heat Pipes, Review, Opportunities and Challenges. Frontiers in Heat Pipes (FHP), 5, 1-48. http://dx.doi.org/10.5098/fhp.5.1
|
[24]
|
Mochizuki, M., Nguyen, T., Mashiko, K., Saito, Y., Nguyen, T. and Wuttijumnong, V. (2011) A Review of Heat Pipe Application Including New Opportunities. Frontiers in Heat Pipes (FHP), 2, Article ID: 01300.
|
[25]
|
Mock, P.R., Marcus, D.B. and Edelman, E.A. (1975) Communication Technology Satellite: A Variable Conductance Heat Pipe Application. Journal of Spacecraft and Rockets, 12, 750-753.
|
[26]
|
Marcus, B.D. and Fleischman, G.L. (1970) Steady-State and Transient Performance of Hot Reservoir Gas Controlled Heat Pipes, ASME Paper 70-HT/SPT-11.
|
[27]
|
Edward, D.K. and Marcus, B.D. (1972) Heat and Mass Transfer in the Vicinity of the Vapor-Gas Front in a Gas-Loaded Heat Pipe. Journal of Heat Transfer, 9, 155-162. http://dx.doi.org/10.1115/1.3449887
|
[28]
|
Rohani, A.R. and Tien, C.L. (1977) Steady Two-Dimensional Heat and Mass Transfer in the Vapor-Gs Region of a Gas Loaded Heat Pipe. Journal of Heat Transfer, 95, 377-382. http://dx.doi.org/10.1115/1.3450067
|
[29]
|
Sun, K.H. and Tien, C.L. (1975) Thermal Performance Characteristic s of Heat Pipe. International Journal of Heat Mass Transfer, 18, 363-380. http://dx.doi.org/10.1016/0017-9310(75)90026-5
|
[30]
|
Shukla, K.N. (1981) Transient Response of a Gas Controlled Heat Pipe. AIAA Journal, 19, 1063-1070. http://dx.doi.org/10.2514/3.7842
|
[31]
|
Shukla, K.N. and Sankara Rao, K. (1983) Heat and Mass Transfer in the Vapor Gas Region of a Gas-Loaded Heat Pipe. ZAMM—Journal of Applied Mathematics and Mechanics, 63, 575-580.
|
[32]
|
Shukla, K.N. (1983) Thermal Performance of a Gas-Loaded Heat Pipe. Proceedings of the Second Asian Congress of Fluid Mechanics, Beijing, 25-29 October 1983, 405.
|
[33]
|
Harley, C. and Faghiri, A. (1994) Transient Two-Dimensional Gas-Loaded Heat Pipe Analysis. ASME, Journal of Heat Transfer, 116, 716-723. http://dx.doi.org/10.2514/3.7842
|
[34]
|
Gray, V.H. (1969) The Rotating Heat Pipe—A Wickless, Hollow Shaft for Transferring High Heat Fluxes. Proceedings of the ASME/AIChE Heat Transfer Conference, Minneapolis, August 3-6 1969, 1-5.
|
[35]
|
Shukla, K.N., Solomon, A.B. and Pillai, B.C. (2009) Experimental Studies of Rotating Heat Pipes. Heat Transfer-Asian Research, 38, 475-484.
|
[36]
|
Peterson, G.P. and Compagua, C. (1987) Review of Cryogenic Heat Pipes in Spacecraft Applications. Journal of Spacecraft and Rockets, 24, 99-100.
|
[37]
|
Charlton, M.C. and Bowman, W.I. (1994) A Mathematical Model to Predict the Transient Temperature Profile of a Cryogenic Heat Pipe during Startup. Journal of Spacecraft and Rockets, 31, 914-916.
|
[38]
|
Conto, P., Ochterbeck, J.M. and Montelli, M.B.H. (2005) Analysis of Supercritical Startup of Cryogenic Heat Pipes with Parasitic Heat Loads. Journal of Thermophysics and Heat Transfer, 19, 497-508.
|
[39]
|
Bughy, D.C., Cepeda-Rizo, J. and Rodriguez, J.L. (2011) Thermal Switching Cryogenic Heat Pipe. In: Miller, S.D. and Roes Jr., R.G., Eds., International Cryocooler Conference—Cryocoolers 16, ICC Press, Boulder, 557-566.
|
[40]
|
Wu, X.P., Mochizuki, M., Nguyen, T., Saito, Y., Wuttijumnong, V., Ghisoiu, H., Kumthonkittikul, V., Sukkasaem, P., Nimitkiatklai, P. and Kiyooka, F. (2007) Low Profile High Performance Vapor Chamber Heat Sinks for Cooling High Density Blade Servers, Semi-Therm 2007.
|
[41]
|
Xiao, B. and Faghiri, A. (2008) A Three Dimensional Thermal Fluid Analysis of Flat Heat Pipes. International Journal of Heat and Mass Transfer, 51, 3113-3126. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.08.023
|
[42]
|
Shukla, K.N., Solomon, A.B. and Pillai, B.C. (2012) Thermal Performance of Vapor Chamber with Nanofluids. Frontiers in Heat Pipes (FHP), 3, Article ID: 033004.
|
[43]
|
Maydanik, Y.F. (2005) Loop Heat Pipes. Applied Thermal Engineering, 25, 635-657. http://dx.doi.org/10.1016/j.applthermaleng.2004.07.010
|
[44]
|
Ku, J. (1999) Operating Characteristics of Loop Heat Pipes. Proceedings of the 29th International Conference on Environmental System, Denver, 1-15 July 1999, Paper No. 1999-01-2007.
|
[45]
|
Chemyshea, M.A., Maydanik, Y.F. and Ochterbeck, J.M. (2008) Heat Transfer Investigation in Evaporator of Loop Heat Pipe during Startup. Journal of Thermophysics and Heat Transfer, 22, 617-622.
|
[46]
|
Chemyshea, M.A. and Maydanik, Y.F. (2009) Heat and Mass Transfer in Evaporator of Loop Heat Pipe. Journal of Thermophysics and Heat Transfer, 23, 725-731.
|
[47]
|
Shukla, K.N. (2008) Thermo Fluid Dynamics of Loop Heat Pipe Operation. International Communications in Heat and Mass Transfer, 35, 916-920. http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.04.020
|
[48]
|
Ku, J., Ottenstein, L., Douglas, L., Pauken, M. and Nirur, G. (2010) Miniature Loop Heat Pipe with Multi Evaporators for Thermal Control of Small Spacecraft. The American Institute of Aeronautics and Astronautics, AIAA Paper No. 183.
|
[49]
|
Ku, J., Paiva, K. and Mantelli, M. (2011) Loop Heat Pipe Transient Behavior Using Heat Source Temperature for Set Point Control with Thermoelectric Converter on Reservoir. NASA—Goddard Space Flight Center, Retrieved 14 September 2011.
|
[50]
|
Okutani, S., Nagano, H., Okazaki, S., Ogawe, H. and Nagai, H. (2014) Principles and Prospects for Micro Heat Pipes. Journal of Electronic Cooling and Thermal Control, 4, Article ID: 43507.
|
[51]
|
Cotter, T.P. (1984) Principles and Prospects for Micro Heat Pipes. Proceedings of the 5th International Heat Pipe Conference, Tsukuba, 14-18 May 1984, 328-335.
|
[52]
|
Peterson, G.P. (1992) Overview of Micro Heat Pipe Research and Development. Applied Mechanics Reviews, 45, 175-189. http://dx.doi.org/10.1115/1.311975
|
[53]
|
Hopkins, R., Faghri, A. and Khrustalev, D. (1999) Flat Miniature Heat Pipes with Micro Capillary Grooves. Journal of Heat Transfer, 121,102-109. http://dx.doi.org/10.1115/1.2825922
|
[54]
|
Shukla, K.N. (2009) Heat Transfer Limitation of a Micro Heat Pipe. ASME Journal of Electronic Packaging, 131, Article ID: 024502. http://dx.doi.org/10.1115/1.3103970
|
[55]
|
Gerner, F.M., Longtin, J.P., Henderson, H.T., Hsieh, W.M., Ramdas, P. and Chang, W.S. (1992) Flow Limitations in Micro Heat Pipes. Proceedings of the 28th ASME National Heat Transfer Conference, San Diego, 9-12 August 1992.
|
[56]
|
Shukla, K.N., Solomon, A.B., Pillai, B.C. and Ibrahim, M. (2010) Thermal Performance of Cylindrical Heat Pipe Using Nanofluids. Journal of Thermophysics and Heat Transfer, 24, 796-802. http://dx.doi.org/10.2514/1.48749
|
[57]
|
Shukla, K.N., Solomon, A.B., Pillai, B.C., Jacob Ruba Singh, B. and Kumar, S.S. (2012) Thermal Performance of Heat Pipe with Suspended Nano-Particles. Heat and Mass Transfer, 48, 1913-1920. http://dx.doi.org/10.1007/s00231-012-1028-4
|
[58]
|
Wang, X., Xu, X. and Choi, S.U.S. (1999) Thermal Conductivity of Nanofluid Mixture. Journal of Thermophysics and Heat Transfer, 13, 474-480. http://dx.doi.org/10.2514/2.6486
|
[59]
|
Li, Y.Y., LV, L.C. and Liu, Z.H. (2010) Influence of Nanofluids on the Operation Characteristics of Small Capillary Pumped Loop. Energy Conversion and Management, 51, 2312-2320. http://dx.doi.org/10.1016/j.enconman.2010.04.004
|
[60]
|
Hill, S.A., Kostyk, C., Motil, B., Notardonato, W., Rickman, S. and Swanson, T. (2012) Thermal Management Systems Roadmap Technology Area-14, NASA—2012.
|