Changes in the Composition and Abundance of Phytoplankton in a Coastal Lagoon of Baja California, México, during 2011


A time series with weekly sampling was conducted from February 20, to December 16, 2011 at a station in the interior of the San Quintín Bay to estimate seasonal changes in the composition and abundance of phytoplankton. Water temperature was recorded and the upwelling index was calculated for the period. Phytoplankton abundance was estimated and phytoplankton were identified by using an inverted microscope and the CHEMTAX program. There were 16 positive phytoplankton anomalies during the year, but only three were considered to be blooms. The blooms were dominated by diatoms and were recorded in the winter, spring and summer. Different genera composed 80% of the total phytoplankton abundance of each of the blooms. The first bloom consisted of diatoms of the genera Pseudo-nitzschia sp. (15.7%), Skeletonema sp. (14.6%), Eucampia sp. (7%), and Navicula sp. (7%); a haptophyte of the genus Imantonia sp. (13.1%); and dinoflagellates of the genus Prorocentrum sp. (4.6%). The second bloom consisted mainly of diatoms of the genera Guinardia sp. (30.6%), Pseudo-nitzschia sp. (21.5%), Skeletonema sp. (14.5%), Chaetoceros sp. (8.4%) and Eucampia sp. (5.3%). The third bloom consisted of Chaetoceros sp. (46.3%), Pseudo-nitzschia sp. (22.6%), Skeletonema sp. (7.29%), and Imantonia sp. (6%). Dinoflagellates were observed in the winter, summer and autumn, but they contributed less biomass than diatoms. Prorocentrum sp., Gymnodinium sp., and Ceratium sp. were among the dinoflagellates that were observed. The differences in abundance and composition of phytoplankton groups in the blooms in San Quintín Bay during 2011 were due primarily to seasonal changes in the physical and chemical factors of the seawater and to upwelling events.

Share and Cite:

Gracia-Escobar, M. , Millán-Núñez, R. , Valenzuela-Espinoza, E. , González-Silvera, A. and Santamaría-del-Ángel, E. (2015) Changes in the Composition and Abundance of Phytoplankton in a Coastal Lagoon of Baja California, México, during 2011. Open Journal of Marine Science, 5, 169-181. doi: 10.4236/ojms.2015.52014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Lara-Lara, J.R. and álvarez-Borrego, S. (1975) Ciclo anual de la clorofila y producción orgánica en la Bahía de San Quintín B.C. Ciencias Marinas, 2, 77-96.
[2] álvarez-Borrego, S. and Najera de Munoz, S. (1979) Series de tiempo de fitoplancton en dos lagunas costeras de Baja California. Ciencias Marinas, 6, 1-19.
[3] Lara-Lara, J.R., álvarez-Borrego, S. and Small, L.F. (1980) Variability and Tidal Exchange of Ecological Properties in a Coastal Lagoon. Estuarine and Coastal Marine Science, 2, 613-637.
[4] Millán-Núnez, R., álvarez-Borrego, S. and Nelson, D.M. (1982) Effects of Physical Phenomena on the Distribution of Nutrients and Phytoplankton Productivity in a Coastal Lagoon. Estuarine Coastal and Shelf Science, 15, 317-335.
[5] Silva-Cota, S. and álvarez-Borrego, S. (1988) The “EL NINO” Effect on the Phytoplankton of a North-Western Baja California Coastal Lagoon. Journal of Coastal Shelf Science, 27, 109-115.
[6] Moreno-Miranda, C. (2007) Variabilidad espacial de la composición taxonómica del fitoplancton en Bahía San Quintín. Msc Thesis, Facultad de Ciencias Marinas, U. A. B. C., Ensenada, B.C. 81 pp.
[7] Gracia-Escobar, M.F., Millán-Núnez, R., González-Silvera, A., Santamaría-del-ángel, E., Camacho-Ibar, V.F. and Trees, C.C. (2014) Changes in the Abundance and Composition of Phytoplankton in a Coastal Lagoon during Neap-Spring Tide Conditions. Open Journal of Marine Science, 4, 80-100.
[8] Tester, P., Geesey, M., Guo, C., Paerl, H. and Millie, D. (1995) Evaluating Phytoplankton Dynamics in the Newport River Estuary (North Carolina, USA) by HPLC-Derived Pigment Profiles. Marine Ecology Progress Series, 24, 237-245.
[9] Mackey, M.D., Mackey, D.J., Higgins, H.W. and Wright, S.W. (1996) CHEMTAX—A Program for Estimating Class Abundances from Chemical Markers: Application to HPLC Measurements of Phytoplankton. Marine Ecology Progress Series, 114, 265-283.
[10] Millán-Núnez, R., Millán-Núnez, E., álvarez-Borrego, S. Trees, C.C., and Santamaría-del-ángel, E. (2004) Variabilidad de la comunidad del fitoplancton en Bahía San Quintín estimada mediante el análisis de pigmentos. Ciencias Marinas, 30, 35-43.
[11] Partensky, F., Hess, W.R. and Vaulot, D. (1999) Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance. Microbiology and Molecular Biology Reviews, 63, 106-127.
[12] Barnard, J.L. (1962) Benthic Marine Exploration of the Bahia San Quintín, Baja California, 1960-1961. Pacific Naturalist, 2, 251-269.
[13] Ribas-Ribas, M., Hernández-Ayón, J.M., Camacho-Ibar, V.F., Cabello-Pasini, A., Mejia-Trejo, A., Durazo, R., Galindo-Bect, S., Souza, A.J., Forja, J.M. and Siqueiros-Valencia, A. (2011) Effects of Upwelling, Tides and Biological Processes on the Inorganic Carbon System of a Coastal Lagoon in Baja California. Estuarine, Coastal and Shelf Science, 95, 367-376.
[14] Utermohl, H. (1958) Zur Vervollkommnung der quentitativen Phytoplankton-Methodik. Mitteilungen der International Vereinigung fur heorestische und Angewandte Limnologie, 9, 1-38.
[15] Intergovernmental Oceanographic Commission of UNESCO (2010) Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis. Karlson, B., Cusack, C. and Bresna, E., Eds., Manuals and Guides, UNESCO, Paris.
[16] Santamaría-del-ángel, E. (1988) Variación fitoplanctónica en Puerto Don Juan, Bahía de los ángeles, Baja California México. Tésis de Maestría en Oceanografía Costera, Facultad de Ciencias Marinas, UABC, Ensenada, 153 p.
[17] Barlow, R.G., Cummings, D.G. and Gibb, S.W. (1997) Improved Resolution of Mono- and Divinyl Chlorophylls a and b and Zeaxanthin and Lutein in Phytoplankton Extracts Using Reverse Phase C-8 HPLC. Marine Ecology Progress Series, 161, 303-307.
[18] Jeffrey, S.W., Mantoura, R.F.C. and Wright, S.W. (1997) Phytoplankton Pigments in Oceanography: Guidelines and Modern Methods. UNESCO Publishing, Paris, 661 p.
[19] Lionard, M., Muylaert, K., Tackx, M. and Vyverman, W. (2008) Evaluation of the Performance of HPLC-CHEMTAX Analysis for Determining Phytoplankton Biomass and Composition in a Turbid Estuary (Schelde, Belgium). Estuarine, Coastal and Shelf Science, 76, 809-817.
[20] Pérez-Brunius, P., Lopéz, M., Parés-Sierra, A. and Pineda, J. (2007) Comparison of Upwelling Indices off Baja California Derived from Three Different Wind Data Sources. California Cooperative Oceanic Fisheries Investigations Reports, 48, 204-214.
[21] Smayda, T.J. (1998) Patterns of Variability Characterizing Marine Phytoplankton, with Examples from Narragansett Bay. ICES Journal of Marine Science, 55, 562-573.
[22] Carstensen, J., Henriksen, P. and Heiskanen, A.S. (2007) Summer Algal Blooms in Shallow Estuaries: Definition, Mechanisms, and Link to Eutrophication. Limnology and Oceanography, 52, 370-384.
[23] Hays, G.C., Richardson, A.J. and Robinson, C. (2005) Climate Change and Marine Plankton. Trends in Ecology & Evolution, 20, 337-344.
[24] Parmesan, C. (2006) Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
[25] Guinder, A.V., Popovich, C.A., Molinero, J.C. and Marcovecchio, J. (2013) Phytoplankton Summer Bloom Dynamics in the Bahía Blanca Estuary in Relation to Changing Environmental Conditions. Continental Shelf Research, 52, 150-158.
[26] Bjorkstedt, E.P., Goericke, R., McClatchie, S., Weber, E., Watson, W., Lo, N., William, T., et al. (2012) State of the California Current 2011-2012: Ecosystems Respond to Local Forcing as La Ni?a Wavers and Wanes. California Cooperative Oceanic Fisheries Investigations Reports, 53, 41-76.
[27] Lepisto, L. and Holopainen, A.L. (2003) Occurrence of Cryptophyceae and Katablepharids in Boreal Lakes. Hydrobiologia, 502, 307-314.
[28] Letelier, R.M., Bidigare, R.R., Hebel, D.V., Ondruseck, M., Winn, C.D. and Karl, D.M. (1993) Temporal Variability of Phytoplankton Community Structure Based on Pigment Analysis. Limnology and Oceanography, 38, 1420-1437.
[29] Abd El-Baky, H., El Baz, F.K. and El-Baroty, G.S. (2008) Evaluation of Marine Alga Ulva lactuca L. as a Source of Natural Preservative Ingredient. American-Eurasian Journal of Agricultural and Environmental Science, 3, 434-444.
[30] Aveytua-Alcázar, L., Camacho-Ibar, V.F., Souza, A.J., Allen, J.I. and Torres, R. (2008) Modelling Zostera marina and Ulva spp. in a Coastal Lagoon. Ecological Modelling, 218, 354-366.
[31] Zertuche-González, J.A., Camacho-Ibar, V.F., Pacheco-Ruíz, I., Cabello-Pasini, A., Galindo-Bect, L., Guzmán-Calderón, J., Macias-Carranza, V. and Espinoza-Avalos, J. (2009) The Role of Ulva spp. as a Temporary Nutrient Sinks in a Coastal Lagoon with Oyster Cultivation and Upwelling Influence. Journal of Applied Phycology, 21, 729-736.
[32] Beach, K.S., Smith, C.M., Michael, T. and Shin, H.W. (1995) Photosynthesis in Reproductive Unicells of Ulva fasciata and Enteromorpha flexuosa: Implications for Ecological Success. Marine Ecology Progress Series, 125, 229-237.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.