Cytotoxic Effect of Dexamethasone Restricted to Noncycling, Early G1 Phase of Melanoma Cells


This study deals with the inhibitory effects of dexamethsone on the proliferation of a human melanoma cells after separation into different fractions according to their position in the cell cycle using a gravity sedimentation chamber. Fractions with high percentage of G1 cells were more susceptible to the action of dexamethsone than those with a lower percentage of G1 cells. Dexamethsone stimulated the rate of incorporation of radioactive precursors into acid-precipitable materials of melanoma M-5A cells starting 24 hours after treatment for one hour. Moreover, dexamethsone treatment markedly increased the volume of the M-5A cells with increasing the possibility of stimulating the transcriptional/translational activity in the cells. This study may hopefully stimulate the development of new approaches in systemic and/or regional chemotherapy with malignant melanoma using dexamethsone with other alkylating agents to get synergestic interaction.

Share and Cite:

A. Osman, M. Sulaiman and Z. Damanhouri, "Cytotoxic Effect of Dexamethasone Restricted to Noncycling, Early G1 Phase of Melanoma Cells," Journal of Cancer Therapy, Vol. 2 No. 2, 2011, pp. 253-257. doi: 10.4236/jct.2011.22032.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. H. Shiu, D. Schottenfeld, B. Maclean and J. G. Fortner, “Adverse Effect of Pregnancy on Melanoma: A Reappraisal,” Cancer, Vol. 37, No. 1, 1976, pp. 181-187.
[2] F. J. Collinson, T. K. Lam, W. M. Bruijn, J. H. M. De Wilt, M. Lamont. J. K. Thompson and R. F. Kefford, “Longterm Survival and Occasional Regression of Distat Melanoma M, Etastases after Adrenal Metastectomy,” Annals of Surgical Oncology, Vol. 15, No. 6, 2008, pp. 1741-1749. doi:10.1245/s10434-008-9836-y
[3] M. D. Bregman, E. Peters, D. Sander, F. L. Meyskens Jr., Dexamethsone, “Prostaglandin A and Retinoic Acid Modulation of Murine and Human Melanoma Cells Grown in Soft Agar,” Journal of the National Cancer Institute, Vol. 71, No. 5, 1983, pp. 927-932.
[4] M. T. Ramirez, A. Chow, D. Hirschhorn Cymerman, T. H. Terwey, A. A. Hochma, S. Lu, R. C. Miles, S. Sakaguchi, A. N. Houghton and M. R. van den Brink, “Glucocorti- copid-Induced TNF Receptor Family Related Gene Acti- vation Overcomes Tolerance/Ignorance to Melanoma Differentiation Antigens and Enhances Antitumor Immu- nity,” The Journal of Immunology, Vol. 176, No. 11, 2006, pp. 6434-6442.
[5] M. Banci, J. M. Metselaar, R. M. Schiffelers and G. Storm, “Antitumor Activity of Liposomal Prednisolone Phosphate Depends on the Presence of Functional Tumor-Associated Macrophages in Tumor Tissue,” Neoplasia, Vol. 10, No. 2, 2008, pp. 108-117. doi:10.1593/neo.07913
[6] L. A. Smets, B. Bout and M. Brouwer, “A Tulp Cytotoxic Effect of Dexamethsone Restricted to Noncycling, Early G1 Phase Cells of L1210 Leukemia,” Journal of Cellular Physiology, Vol. 116, No. 3, 1983, pp. 397-403. doi:10.1002/jcp.1041160318
[7] K. Liao, P. B. Dent and P. B. McCulloch, “Characterization of Human Malignant Melanoma Cell Lines. I. Morphology and Growth Characteristics in Culture,” Journal of the National Cancer Institute, Vol. 54, No. 5, 1975, pp. 1037-1044.
[8] A. Tulp, J. G. Collard, A. A. M. Hart and J. A. Aten, “A New Unit Gravity Sedimentation Chamber,” Analytical Biochemistry, Vol. 105, No. 1, 1980, pp. 246-256. doi:10.1016/0003-2697(80)90452-2
[9] A. M. Osman, O. A. Nasseir and N. R. Ismail, “Potential Mechanism for the Effects of Dexamethasone on Growth of Human Melanoma Cells in Vitro,” Health, Vol. 2, No. 8, 2010, pp. 857-886. doi:10.4236/health.2010.28129
[10] J. R. Whittak, “Changes in Melanogenesis during the Dedifferentiation of Chick Retinal Pigment Cells in Cell Cultures,” Developmental Biology, Vol. 8, No. 1, 1963, pp. 99-127. doi:10.1016/0012-1606(63)90028-9
[11] W. H. McCarthy, A. L. Black and G. W. Milton, “Melanoma in New South Wales: An Epidemiologic Survey, 1970-1976,” Cancer, Vol. 46, No. 2, 1980, pp. 427-432. doi:10.1002/1097-0142(19800715)46:2<427::AID-CNCR2820460237>3.0.CO;2-E
[12] L. Nathanson, “Epidemiologic and Etiologic Considera- tions in Malignant Melanoma,” In: J. J. Costanzi, Ed., Cancer Treatment and Research, Martinus Nijhoff, the Huige, Vol. 9, 1983, pp. 1-27. doi:10.1146/annurev.genet.38.072902.092717
[13] R. L. Comis, “DTIC (NSC-45388) in Malignant Melanoma: A Perspective,” Cancer Treat Rep, Vol. 60, No. 2, 1976, pp. 165-176.
[14] J. J. Costanzi, “The Chemotherapy of Malignant Melanoma,” In: J. J. Costanzi, Ed., Cancer Treatment and Research, Martinus Nijhoff, the Huige, Vol. 9, 1983, pp. 259-274.
[15] A. Ristic-Fira, M. Vujcic, M. Krstic-Demonacos, D. Kanazir, “Identification and Characterization of Glucocorticoid Receptors in B16 Mouse Melanoma Cells,” Endocrine Regulations, Vol. 33, No. 3, 1999, pp. 109-115.
[16] R. A. Ramos,Y. Nishio, A. C. Maiyar, K. E. Simon ,C. C. Ridder, Y. Ge and G. L. Firestone, “Glucocorticoid- Sti- mulated CCAAT/Enhancer-Binding Protein Alpha Expression is Required for Steroid-Induced G1 Cell Cycle Arrest of Minimal-Deviation Rat Hepatoma Cells,” Molecular and Cellular Biology, Vol. 16, No. 10, October 1996, pp. 5288-5301.
[17] J. K. Chang, C. J. Li , H. J. Liao , C. K. Wang, G. J. Wang and M. L. Ho, “Anti-Inflammatory Drugs Suppress Proliferation and Induce Apoptosis through Altering Expressions of Cell Cycle Regulators and Pro-Apoptotic Factors in Cultured Human Osteoblasts,” Toxicology, Vol. 258, No. 2-3, 28 April 2009, pp. 148-156.
[18] Han-M., Koo, M. VanBrocklin, M. J. McWilliams, S. H. Leppla, N. S. Duesbery and G. F. Vande Woude, “Apo- ptosis and Melanogenesis in Human Melanoma Cells Induced by Anthrax Lethal Factor Inactivation of Mitogen-Activated Protein Kinase,” PNAS, Vol. 99, No. 5, 2002, pp. 3052-3057. doi:10.1073/pnas.052707699

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.