Share This Article:

Vection Is Unaffected by Circadian Rhythms

Abstract Full-Text HTML XML Download Download as PDF (Size:370KB) PP. 440-446
DOI: 10.4236/psych.2015.64041    3,014 Downloads   3,483 Views   Citations

ABSTRACT

We examined the effect of circadian rhythms on self-motion perception (vection). We measured the strength of vection (i.e. latency, duration, and magnitude of vection) every three hours from 9 AM to 9 PM. The results showed that vection was similar at all times measured. Thus, we concluded that vection was unaffected by circadian clock.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ogawa, M. , Ito, H. & Seno, T. (2015). Vection Is Unaffected by Circadian Rhythms. Psychology, 6, 440-446. doi: 10.4236/psych.2015.64041.

References

[1] Allison, R. S., Zacher, J. E., Kirollos, R., Guterman, P. S., & Palmisano. S. (2012). Perception of Smooth and Perturbed Vection in Short-Duration Microgravity. Experimental Brain Research, 223, 479-487.
http://dx.doi.org/10.1007/s00221-012-3275-5
[2] Araujo, D. F., Soares, C. S., & de Almondes, K. M. (2013). Relation between Sleep and Visuospatial Skills in Students from a Public School. Estudos de Psicologia, 18, 109-116.
http://dx.doi.org/10.1590/S1413-294X2013000100018
[3] Aschoff, J. (1984). Circadian Timing. Annals of the New York Academy of Sciences, 423, 442-468.
http://dx.doi.org/10.1111/j.1749-6632.1984.tb23452.x
[4] Aschoff, J. (1998). Human Perception of Short and Long Time Intervals: Its Correlation with Body Temperature and the Duration of Wake Time. Journal of Biological Rhythms, 13, 437-442.
http://dx.doi.org/10.1177/074873098129000264
[5] Aschoff, J., & Daan, S. (2009). Human Time Perception in Temporal Isolation: Effects of Illumination Intensity. Chronobiology International, 14, 585-596.
http://dx.doi.org/10.3109/07420529709001449
[6] Bonnet, M. (2002). Sleep Deprivation. In M. H. Kryger, T. Roth, & W. C. Dement (Eds.), Principles and Practice of Sleep Medicine (pp. 53-71). Philadelphia, PA: W.B. Saunders Company.
[7] Bougard, C., Lepelley, M. C., & Davenne, D. (2011). The Influences of Time-of-Day and Sleep Deprivation on Postural Control. Experimental Brain Research, 209, 109-115.
http://dx.doi.org/10.1007/s00221-010-2524-8
[8] Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential Effects of Central versus Peripheral Vision on Egocentric and Exocentric Motion Perception. Experimental Brain Research, 16, 476-491.
http://dx.doi.org/10.1007/BF00234474
[9] Chee, M. W. L., & Chuah, Y. M. L. (2007). Functional Neuroimaging and Behavioral Correlates of Capacity Decline in Visual Short-Term Memory after Sleep Deprivation. Proceedings of the National Academy of Sciences of the United States of America, 104, 9487-9492.
http://dx.doi.org/10.1073/pnas.0610712104
[10] Daan, S., Beersma, D., & Borbely, A. (1984). Timing of Human Sleep: Recovery Process Gated by a Circadian Pacemaker. American Journal of Physics, 246, 161-178.
[11] Dichgans, J., & Brandt, T. (1978). Visual-Vestibular Interaction: Effect on Self-Motion Perception and Postural Control. In R. Held, H. W. Leibowitz, & H. L. Tueber (Eds.), Handbook of Sensory Physiology (pp. 755-804). Berlin: Springer-Verlag.
[12] Fischer, M. H., & Kornmüller, A. E. (1930). Optokinetischausgeloste Bewegungswahrnehmung und Optokinetischer Nystagmus. Journal fürPsychologie und Neurologie (Leipzig), 41, 273-308.
[13] Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and Vection in Young and Elderly Adults. Gerontology, 55, 637-643.
http://dx.doi.org/10.1159/000235816
[14] Held, R., Dichgans, J., & Bauer, J. (1975). Characteristics of Moving Visual Scenes Influencing Spatial Orientation. Vision Research, 15, 357-365.
http://dx.doi.org/10.1016/0042-6989(75)90083-8
[15] Howard, I. P. (1982). Human Visual Orientation. Chichester: Wiley.
[16] Kuriyama, K., Uchiyama, M., Suzuki, H., Tagaya, H., Ozaki, A., Aritake, S., Kameid, Y., Nishikawa, T., & Takahashi, K. (2003). Circadian Fluctuation of Time Perception in Healthy Human Subjects. Neuroscience Research, 46, 23-31.
http://dx.doi.org/10.1016/S0168-0102(03)00025-7
[17] Lepecq, J. C., Giannopulu, I., & Baudonniere, P. M. (1995). Cognitive Effects on Visually Induced Body Motion in Children. Perception, 24, 435-449.
http://dx.doi.org/10.1068/p240435
[18] Lestienne, F., Soechting, J., & Berthoz, A. (1977). Postural Readjustments Induced by Linear Motion of Visual Scenes. Experimental Brain Research, 28, 363-384.
[19] Morofushi, M., Shinohara, K., & Kimura, F. (2001). Menstrual and Circadian Variations in Time Perception in Healthy Women and Women with Premenstrual Syndrome. Neuroscience Research, 41, 339-344.
http://dx.doi.org/10.1016/S0168-0102(01)00290-5
[20] Mueller, C., Kornilova, L., Wiest, G., & Steinhoff, N. (1994). Psychophysical Studies of Visuo-Vestibular Interaction in Microgravity. Actaastronautica, 33, 9-13.
http://dx.doi.org/10.1016/0094-5765(94)90102-3
[21] Nakajima, T., Uchiyama, M., Enomoto, T., Shibui, K., Ishibashi, K., Kanno, O., & Okawa, M. (1998). Human Time Production under Constant Routine. Psychiatry and Clinical Neurosciences, 52, 240-241.
http://dx.doi.org/10.1111/j.1440-1819.1998.tb01052.x
[22] Nakamura, S., & Shimojo, S. (1998). Stimulus Size and Eccentricity in Visually Induced Perception of Horizontally Translational Self-Motion. Perceptual and Motor Skills, 87, 659-663.
http://dx.doi.org/10.2466/pms.1998.87.2.659
[23] Nishimura, T., Seno, T., Motoi, M., & Watanuki, S. (2014). Illusory Self-Motion (Vection) May Be Inhibited by Hypobaric Hypoxia. Aviation, Space, and Environmental Medicine, 85, 504-508.
http://dx.doi.org/10.3357/ASEM.3812.2014
[24] Ogawa, M., & Seno, T. (2014). Vection Is Modulated by the Semantic Meaning of Stimuli and Experimental Instructions. Perception, 63, 605-615.
http://dx.doi.org/10.1068/p7639
[25] Ogawa, M., Matsumori, K., Seno, T., & Higuchi, S. (submitted). The Deprivation of Sleep Might Enhance Vection.
[26] Palmisano, S., & Chan, A. Y. C. (2004). Jitter and Size Effects on Vection Are Robust to Experimental Instructions and Demands. Perception, 33, 987-1000.
http://dx.doi.org/10.1068/p5242
[27] Palmisano, S., Apthorp, D., Seno, T., & Stapley, P. (2014). Spontaneous Postural Sway Predicts the Strength of Smooth Vection. Experimental Brain Research, 232, 1185-1191.
http://dx.doi.org/10.1007/s00221-014-3835-y
[28] Poppel, E., & Giedke, H. (1970). Diurnal Variation of Time Perception. Psychologische Forschung, 34, 182-198.
http://dx.doi.org/10.1007/BF00424544
[29] Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2011). Spatialized Sound Enhances Biomechanically-Induced Self-Motion Illusion (Vection). Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, 7-12 May 2011, 2799-2802.
[30] Sasaki, K., Seno, T., Yamada, Y., & Miura, K. (2012). Emotional Sounds Influence Vertical Vection. Perception, 41, 875-877.
http://dx.doi.org/10.1068/p7215
[31] Seno, T. (2013a). Social Inhibition of Vection. Psychology, 4, 619-621.
http://dx.doi.org/10.4236/psych.2013.48088
[32] Seno, T. (2013b). Music Enhances Vection. Psychology, 7, 566-568.
http://dx.doi.org/10.4236/psych.2013.47081
[33] Seno, T. (2014). Vection Is Not Determined by the Retinal Coordinate. Psychology, 5, 12-14.
http://dx.doi.org/10.4236/psych.2014.51003
[34] Seno, T., & Fukuda, H. (2012). Stimulus Meanings Alter Illusory Self-Motion (Vection)—Experimental examination of the train illusion. Seeing & Perceiving, 25, 631-645.
http://dx.doi.org/10.1163/18784763-00002394
[35] Seno, T., Abe, K., & Kiyokawa, S. (2013). Wearing Heavy Iron Clogs Can Inhibit Vection. Multisensory Rresearch, 26, 569-580.
http://dx.doi.org/10.1163/22134808-00002433
[36] Seno, T., & Nakamura, S. (2013). Alcohol Consumption Enhances Vection. Perception, 42, 580-582.
http://dx.doi.org/10.1068/p7473
[37] Seno, T., Ito, H., & Sunaga, S. (2009). The Object and Background Hypothesis for Vection. Vision Research, 49, 2973-2982.
http://dx.doi.org/10.1016/j.visres.2009.09.017
[38] Seno, T., Ito, H., & Sunaga, S. (2010). Vection Aftereffects from Expanding/Contracting Stimuli. Seeing & Perceiving, 23, 273-294.
http://dx.doi.org/10.1163/187847510X532667
[39] Shirai, N., Seno, T., & Morohashi, S. (2013). More Rapid and Stronger Vection Can Occur in Elementary School Children than in Adults. Perception, 41, 1399-1402.
http://dx.doi.org/10.1068/p7251
[40] Shirai, N., Imura, T., Tamura, R., & Seno, T. (2014). Stronger Vection in Junior High School Children than in Adults. Frontiers in Psychology, 5, Article 563.
http://dx.doi.org/10.3389/fpsyg.2014.00563
[41] Schmeider, E., Leweke, F. M., Stermemann, U., Weber, M. M., & Emrich, H. M. (1996). Visual 3D Illusion: A Systems-Theoretical Approach to Psychosis. European Archives of Psychiatry and Clinical Neuroscience, 246, 256-260.
http://dx.doi.org/10.1007/BF02190277
[42] Young, L. R., & Shelhamer, M. (1990). Microgravity Enhances the Relative Contribution of Visually-Induced Motion Sensation. Aviation, Space, and Environmental Medicine, 61, 525-530.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.