[1]
|
Ciosk, R., Shirayama, M., Shevchenko, A., Tanaka, T., Toth, A., Shevchenko, A. and Nasmyth, K. (2000) Cohesin’s Binding to Chromosomes Depends o Guacci, V., Koshland, D. and Strunnikov, A. (1997) A Direct Link between Sister Chromatid Cohesion and Chromosome Condensation Revealed through the Analysis of MCD1 in S. cerevisiae. Cell, 91, 47-57. http://dx.doi.org/10.1016/S0092-8674(01)80008-8
|
[2]
|
Michaelis, C., Ciosk, R. and Nasmyth, K. (1997) Cohesins: Chromosomal Proteins That Prevent Premature Separation of Sister Chromatids. Cell, 91, 35-45. http://dx.doi.org/10.1016/S0092-8674(01)80007-6
|
[3]
|
n a Separate Complex Consisting of Scc2 and Scc4 Proteins. Molecular Cell, 5, 1-20. http://dx.doi.org/10.1016/S1097-2765(00)80420-7
|
[4]
|
Uhlmann, F., Wernic, D., Poupart, M.A., Koonin, E.V. and Nasmyth, K. (2000) Cleavage of Cohesin by the CD Clan Protease Separin Triggers Anaphase in Yeast. Cell, 103, 375-386. http://dx.doi.org/10.1016/S0092-8674(00)00130-6
|
[5]
|
Peters, J.M., Tedeschi, A. and Schmitz, J. (2008) The Cohesin Complex and Its Roles in Chromosome Biology. Genes and Development, 22, 3089-3114. http://dx.doi.org/10.1101/gad.1724308
|
[6]
|
Nasmyth, K. (2011) Cohesin: A Catenase with Separate Entry and Exit Gates? Nature Cell Biology, 13, 1170-1177. http://dx.doi.org/10.1038/ncb2349
|
[7]
|
Ocampo-Hafalla, M.T. and Uhlmann, F. (2011) Cohesin Loading and Sliding. The Journal of Cell Science, 124, 685-691. http://dx.doi.org/10.1242/jcs.073866
|
[8]
|
Simmons-Kovacs, L.A. and Haase, S.B. (2010) Cohesin: It’s Not Just for Chromosomes Anymore. Cell Cycle, 9, 1750-1753. http://dx.doi.org/10.4161/cc.9.9.11792
|
[9]
|
Losada, A. (2014) Cohesin in Cancer: Chromosome Segregation and Beyond. Nature Reviews Cancer, 14, 389-393. http://dx.doi.org/10.1038/nrc3743
|
[10]
|
Mehta, G.D., Kumar, R., Srivastava, S. and Ghosh, S.K. (2013) Cohesin: Functions beyond Sister Chromatid Cohesion. FEBS Letters, 587, 2299-2312. http://dx.doi.org/10.1016/j.febslet.2013.06.035
|
[11]
|
Heidinger-Pauli, J.M., Unal, E., Guacci, V. and Koshland, D. (2008) The Kleisin Subunit of Cohesin Dictates Damage-Induced Cohesion. Molecular Cell, 31, 47-56. http://dx.doi.org/10.1016/j.molcel.2008.06.005
|
[12]
|
Kim, S.T., Xu, B. and Kastan, M.B. (2002) Involvement of the Cohesin Protein, Smc1, in Atm-Dependent and Independent Responses to DNA Damage. Genes and Development, 16, 560-570. http://dx.doi.org/10.1101/gad.970602
|
[13]
|
Yazdi, P.T., Wang, Y., Zhao, S., Patel, N., Lee, E.Y. and Qin, J. (2002) SMC1 Is a Downstream Effector in the ATM/NBS1 Branch of the Human S-Phase Checkpoint. Genes and Development, 16, 571-582. http://dx.doi.org/10.1101/gad.970702
|
[14]
|
Kim, S.T., Lim, D.S., Canman, C.E. and Kastan, M.B. (1999) Substrate Specificities and Identification of Putative Substrates of ATM Kinase Family Members. The Journal of Biological Chemistry, 274, 37538-37543. http://dx.doi.org/10.1074/jbc.274.53.37538
|
[15]
|
Grandin, N. and Reed, S.I. (1993) Differential Function and Expression of Saccharomyces cerevisiae B-Type Cyclins in Mitosis and Meiosis. Molecular and Cellular Biology, 13, 2113-2125.
|
[16]
|
Emili, A. (1998) MEC1-Dependent Phosphorylation of Rad9p in Response to DNA Damage. Molecular Cell, 2, 183-189. http://dx.doi.org/10.1016/S1097-2765(00)80128-8
|
[17]
|
Siede, W., Nusspaumer, G., Portillo, V., Rodriguez, R. and Friedberg, E.C. (1996) Cloning and Characterization of RAD17, a Gene Controlling Cell Cycle Responses to DNA Damage in Saccharomyces cerevisiae. Nucleic Acids Research, 24, 1669-1675. http://dx.doi.org/10.1093/nar/24.9.1669
|
[18]
|
Bashkirov, V.I., Bashkirova, E.V., Haghnazari, E. and Heyer, W.D. (2003) Direct Kinase-to-Kinase Signaling Mediated by the FHA Phosphoprotein Recognition Domain of the Dun1 DNA Damage Checkpoint Kinase. Molecular and Cellular Biology, 23, 1441-1452. http://dx.doi.org/10.1128/MCB.23.4.1441-1452.2003
|
[19]
|
Garvik, B., Carson, M. and Hartwell, L. (1995) Single-Stranded DNA Arising at Telomeres in cdc13 Mutants May Constitute a Specific Signal for the RAD9 Checkpoint. Molecular and Cellular Biology, 15, 6128-6138.
|
[20]
|
Takata, H., Kanoh, Y., Gunge, N., Shirahige, K. and Matsuura, A. (2004) Reciprocal Association of the Budding Yeast ATM-Related Proteins Tel1 and Mec1 with Telomeres in Vivo. Molecular Cell, 14, 515-522. http://dx.doi.org/10.1016/S1097-2765(04)00262-X
|
[21]
|
Li, R. and Murray, A.W. (1991) Feedback Control of Mitosis in Budding Yeast. Cell, 66, 519-531. http://dx.doi.org/10.1016/0092-8674(81)90015-5
|
[22]
|
Grandin, N., Corset, L. and Charbonneau, M. (2012) Genetic and Physical Interactions between Tel2 and the Med15 Subunit of Mediator in Saccharomyces cerevisiae. PLoS ONE, 7, e30451. http://dx.doi.org/10.1371/journal.pone.0030451
|
[23]
|
Kulemzina, I., Schumacher, M.R., Verma, V., Reiter, J., Metzler, J., Failla, A.V., Lanz, C., Sreedharan, V.T., Rätsch, G. and Ivanov, D. (2012) Cohesin Rings Devoid of Scc3 and Pds5 Maintain Their Stable Association with the DNA. PLoS Genetics, 8, e1002856. http://dx.doi.org/10.1371/journal.pgen.1002856
|
[24]
|
Sanchez, Y., Bachant, J., Wang, H., Hu, F., Liu, D., Tetzlaff, M. and Elledge, S.J. (1999) Control of the DNA Damage Checkpoint by Chk1 and Rad53 Protein Kinases through Distinct Mechanisms. Science, 286, 1166-1171. http://dx.doi.org/10.1126/science.286.5442.1166
|
[25]
|
Chen, S., Albuquerque, C.P., Liang, J., Suhandynata, R.T. and Zhou, H. (2010) A Proteome-Wide Analysis of Kinase-Substrate Network in the DNA Damage Response. The Journal of Biological Chemistry, 285, 12803-12812. http://dx.doi.org/10.1074/jbc.M110.106989
|
[26]
|
Hauf, S., Roitinger, E., Koch, B., Dittrich, C.M., Mechtler, K. and Peters, J.M. (2005) Dissociation of Cohesin from Chromosome Arms and Loss of Arm Cohesion during Early Mitosis Depends on Phosphorylation of SA2. PLoS Biology, 3, e69. http://dx.doi.org/10.1371/journal.pbio.0030069
|
[27]
|
Roig, M.B., Löwe, J., Chan, K.L., Beckouët, F., Metson, J. and Nasmyth, K. (2014) Structure and Function of Cohesin’s Scc3/SA Regulatory Subunit. FEBS Letters, 588, 3692-3702. http://dx.doi.org/10.1016/j.febslet.2014.08.015
|