Share This Article:

Minimal Generalized Time-Bandwidth Product Method for Estimating the Optimum Fractional Fourier Order

DOI: 10.4236/jcc.2015.33002    2,184 Downloads   2,544 Views   Citations
Author(s)    Leave a comment

ABSTRACT

A minimal generalized time-bandwidth product-based coarse-to-fine strategy is proposed with one novel ideas highlighted: adopting a coarse-to-fine strategy to speed up the searching process. The simulation results on synthetic and real signals show the validity of the proposed method.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Tian, L. and Peng, Z. (2015) Minimal Generalized Time-Bandwidth Product Method for Estimating the Optimum Fractional Fourier Order. Journal of Computer and Communications, 3, 8-12. doi: 10.4236/jcc.2015.33002.

References

[1] Akan, A., Shakhmurov, V. and Cekic, Y. (2001) A Fractional Gabor Transform. IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP'01), Salt Lake City, 7-11 May 2001, Vol. 6, 3529-3532.
[2] Zhang, Y., Gu, B.Y., Dong, B.Z., et al. (1997) Fractional Gabor Transform. Optics Letters, 22, 1583-1585. http://dx.doi.org/10.1364/OL.22.001583
[3] Akan, A. and Çekiç, Y. (2003) A Fractional Gabor Expansion. Journal of the Franklin Institute, 340, 391-397. http://dx.doi.org/10.1016/j.jfranklin.2003.08.004
[4] Pei, S.C. and Ding, J.J. (2007) Relations between Gabor Transforms and Fractional Fourier Transforms and Their Applications for Signal Processing. IEEE Transactions on Signal Processing, 55, 4839-4850. http://dx.doi.org/10.1109/TSP.2007.896271
[5] Durak, L. and Arikan, O. (2003) Short-Time Fourier Transform: Two Fundamental Properties and an Optimal Implementation. IEEE Transactions on Signal Processing, 51, 1231-1242. http://dx.doi.org/10.1109/TSP.2003.810293
[6] Chen, Y.P., Peng, Z.M., He, Z.H., Tian, L. and Zhang, D.J. (2013) The Optimal Fractional Gabor Transform Based on the Adaptive Window Function and Its Application. Applied Geo-physics, 10, 305-313. http://dx.doi.org/10.1007/s11770-013-0392-2
[7] Zheng, L. and Shi, D. (2010) Maximum Amplitude Method for Estimating Compact Fractional Fourier Domain. IEEE Signal Processing Letters, 17, 293-296. http://dx.doi.org/10.1109/LSP.2009.2038511
[8] Guan, J., Chen, X.L., Huang, Y. and He, Y. (2012) Adaptive Fractional Fourier Transform-Based Detection Algorithm for Moving Target in Heavy Sea Clutter. IET Radar, Sonar and Navigation, 6, 389-401. http://dx.doi.org/10.1049/iet-rsn.2011.0030
[9] Almeida, L.B. (1994) The Fractional Fourier Transform and Time-Frequency Representations. IEEE Transactions on Signal Processing, 42, 3084-3091. http://dx.doi.org/10.1109/78.330368
[10] Ozaktas, H.M., et al. (1996) Digital Computation of the Fractional Fourier Transform. IEEE Transactions on Signal Processing, 44, 2141-2150. http://dx.doi.org/10.1109/78.536672
[11] Tian, L. and Peng, Z. (2014) Determining the optimal Order of Fractional Gabor Transform Based on Kurtosis Maximization and Its Application. Journal of Applied Geophysics, 108, 152-158. http://dx.doi.org/10.1016/j.jappgeo.2014.06.009

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.