[1]
|
Levy, Y. and Yechiali, U. (1975) Utilization of Idle Time in an M/G/1 Queueing System. Management Science, 22, 202-211.
http://dx.doi.org/10.1287/mnsc.22.2.202
|
[2]
|
Doshi, B.T. (1986) Queueing Systems with Vacations, a Survey. Queueing Systems, 1, 29-66.
http://dx.doi.org/10.1007/BF01149327
|
[3]
|
Doshi, B.T. (1990) Single-Server Queues with Vacations. In: Takagi, H., Ed., Stochastic Analysis of Computer and Communications Systems, Elsevier, Amsterdam.
|
[4]
|
Takagi, H. (1991) Queueing Analysis: A Foundation of Performance Analysis, Volume 1: Vacation and Priority Systems, Part 1. Elsevier Science Publishers B.V., Amsterdam.
|
[5]
|
Tian, N. and Zhang, G. (2006) Vacation Queueing Models: Theory and Applications. Springer-Verlag, New York.
|
[6]
|
Fuhrmann, S.W. and Cooper, R.B. (1985) Stochastic Decomposition in M/G/1 Queue with Generalized Vacations. Operations Research, 33, 1117-1129.
http://dx.doi.org/10.1287/opre.33.5.1117
|
[7]
|
Servi, L.D. and Finn, S.G. (2002) M/M/1 Queue with Working Vacations (M/M/1/WV). Performance Evaluation, 50, 41-52.
http://dx.doi.org/10.1016/S0166-5316(02)00057-3
|
[8]
|
Wu, D. and Takagi, H. (2006) M/G/1 Queue with Multiple Working Vacation. Performance Evaluation, 63, 654-681.
http://dx.doi.org/10.1016/j.peva.2005.05.005
|
[9]
|
Baba, Y. (2005) Analysis of a GI/M/1 Queue with Multiple Working Vacations. Operations Research Letters, 33, 201- 209.
http://dx.doi.org/10.1016/j.orl.2004.05.006
|
[10]
|
Banik, A., Gupta, U. and Pathak, S. (2007) On the GI/M/1/N Queue with Multiple Working Vacations-Analytic Analysis and Computation. Applied Mathematical Modelling, 31, 1701-1710. http://dx.doi.org/10.1016/j.apm.2006.05.010
|
[11]
|
Liu, W., Xu, X. and Tian, N. (2007) Stochastic Decompositions in the M/M/1 Queue with Working Vacations. Operations Research Letters, 35, 595-600.
http://dx.doi.org/10.1016/j.orl.2006.12.007
|
[12]
|
Krishnamoorthy, A. and Sreenivasan, C. (2012) An M/M/2 Queueing System with Heterogeneous Servers including One with Working Vacation. International Journal of Stochastic Analysis, 2012, Article ID: 145867.
http://dx.doi.org/10.1155/2012/145867
|
[13]
|
Ibe, O.C. and Isijola, O.A. (2014) M/M/1 Multiple Vacation Queueing Systems with Differentiated Vacations. Modeling and Simulation in Engineering, 2014, Article 158247.
http://dx.doi.org/10.1155/2014/158247
|
[14]
|
Li, J. and Tian, N. (2007) The M/M/1 Queue with Working Vacation and Vacation Interruption. Journal of Systems Science and Systems Engineering, 16, 121-127.
http://dx.doi.org/10.1007/s11518-006-5030-6
|
[15]
|
Li, J. and Tian, N. (2007) The Discrete-Time GI/Geo/1 Queue with Working Vacations and Vacation Interruption. Applied Mathematics and Computation, 185, 1-10.
http://dx.doi.org/10.1016/j.amc.2006.07.008
|
[16]
|
Li, J., Tian, N. and Ma, Z. (2008) Performance Analysis of GI/M/1 Queue with Working Vacations and Vacation Interruption. Applied Mathematical Modelling, 32, 2715-2730.
http://dx.doi.org/10.1016/j.apm.2007.09.017
|
[17]
|
Zhang, M. and Hou, Z. (2010) Performance Analysis of M/G/1 Queue with Working Vacations and Vacation Interruption. Journal of Computational and Applied Mathematics, 234, 2977-2985.
http://dx.doi.org/10.1016/j.cam.2010.04.010
|
[18]
|
Sreenivasan, C., Chakravarthy, S.R. and Krishnamoorthy, A. (2013) MAP/PH/1 Queue with Working Vacations, Vacation Interruptions and N-Policy. Applied Mathematical Modeling, 37, 3879-3893.
http://dx.doi.org/10.1016/j.apm.2012.07.054
|
[19]
|
Isijola-Adakeja, O.A. and Ibe, O.C. (2014) M/M/1 Multiple Vacation Queueing Systems with Differentiated Vacations and Vacation Interruptions. IEEE Access, 2, 1384-1395.
http://dx.doi.org/10.1109/ACCESS.2014.2372671
|
[20]
|
Ibe, O.C. and Trivedi, K.S. (1991) Stochastic Petri Net Analysis of Finite-Population Vacation Queueing Systems. Queueing Systems, 8, 111-128.
http://dx.doi.org/10.1007/BF02412245
|
[21]
|
Kella, O. (1990) Optimal Control of the Vacation Scheme in an M/G/1 Queue. Operations Research Letters, 38, 724- 728.
http://dx.doi.org/10.1287/opre.38.4.724
|
[22]
|
Ibe, O.C. (2014) Fundamentals of Applied Probability and Random Processes. 2nd Edition, Elsevier Academic Press, Waltham.
|
[23]
|
Yadin, M. and Naor, P. (1963) Queueing Systems with a Removable Service Station. Operational Research Quarterly, 14, 395-405.
|
[24]
|
Kleinrock, L. (1975) Queueing Systems, Volume 1: Theory. John Wiley & Sons, New York.
|
[25]
|
Little, J.D.C. (1961) A Proof of the Formula: L = λW. Operations Research, 9, 383-387.
http://dx.doi.org/10.1287/opre.9.3.383
|