[1]
|
Kerr, R.P. (1963) Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Physical Review Letters, 11, 237-238. http://dx.doi.org/10.1103/PhysRevLett.11.237
|
[2]
|
Hernandez, W. (1967) Material Sources for the Kerr Metric. Physical Review, 159, 1070-1072. http://dx.doi.org/10.1103/PhysRev.159.1070
|
[3]
|
Thorne, K.S. (1969) Relativistic Stars, Black Holes and Gravitational Waves. Sachs, B.K., Ed., General Relativity and Cosmology, Proceedings of the International School of Physics Enrico Fermi, Course XLVII, Academic Press, Waltham, 237-283. http://www.its.caltech.edu/kip/scripts/publications.html
|
[4]
|
Marsh, G.E. (2014) Rigid Rotation and the Kerr Metric. http://arxiv.org/abs/1404.5297
|
[5]
|
Boshkayev, K., Quevedo, H. and Ruffini, R. (2012) Gravitational Field of Compact Objects in General Relativity. Physical Review D, 86, Article ID: 064043. http://dx.doi.org/10.1103/PhysRevD.86.064043
|
[6]
|
Cuchí, J.E., Molina, A. and Ruiz, E. (2011) Double Shell Stars as Source of the Kerr Metric in the CMMR Approximation. Journal of Physics: Conference Series, 314, Article ID: 012070.
|
[7]
|
Krisch, J.P. and Glass, E.N. (2009) Counter-Rotating Kerr Manifolds Separated by a Fluid Shell. Classical and Quantum Gravity, 26, Article ID: 175010. http://dx.doi.org/10.1088/0264-9381/26/17/175010
|
[8]
|
Haggag, S. and Marek, J. (1981) A Nearly-Perfect-Fluid Source for the Kerr metric. Il Nuovo Cimento B, 62, 273-282. http://dx.doi.org/10.1007/BF02721277
|
[9]
|
Haggag, S. (1990) A Fluid Source for the Kerr Metric. Il Nuovo Cimento B, 105, 365-370. http://dx.doi.org/10.1007/BF02728818
|
[10]
|
Haggag, S. (1990) A Static Axisymmetric Anisotropic Fluid Solution in General Relativity. Astrophysics and Space Science, 173, 47-51. http://dx.doi.org/10.1007/BF00642561
|
[11]
|
Krasiński, A. (1980) A Newtonian Model of the Source of the Kerr Metric. Physics Letters, 80A, 238-242. http://dx.doi.org/10.1016/0375-9601(80)90010-9
|
[12]
|
Ramadan, A. (2004) Fluid Sources for the Kerr Metric. Il Nuovo Cimento, 119B, 123-129.
|
[13]
|
Krasiński, A. (1978) Ellipsoidal Space-Times, Sources for the Kerr Metric. Annals of Physics, 112, 22-40. http://dx.doi.org/10.1016/0003-4916(78)90079-9
|
[14]
|
Drake, S.P. and Turolla, R. (1997) The Application of the Newman-Janis Algorithm in Obtaining Interior Solutions of the Kerr Metric. Classical and Quantum Gravity, 14, 1883-1897. http://dx.doi.org/10.1088/0264-9381/14/7/021
|
[15]
|
Viaggiu, S. (2006) Interior Kerr Solutions with the Newman-Janis Algorithm Starting with Physically Reasonable Space-Times. International Journal of Modern Physics D, 15, 1441-1453. http://dx.doi.org/10.1142/S0218271806009169
|
[16]
|
Castejon-Amenedo, J. and Manko, V.S. (1990) Superposition of the Kerr Metric with the Generalized Erez-Rosen Solution. Physical Review D, 41, 2018-2020. http://dx.doi.org/10.1103/PhysRevD.41.2018
|
[17]
|
Manko, V.S. and Novikov, I.D. (1992) Generalizations of the Kerr and Kerr-Newman Metrics Possessing an Arbitrary Set of Mass-Multipole Moments. Classical and Quantum Gravity, 9, 2477-2487. http://dx.doi.org/10.1088/0264-9381/9/11/013
|
[18]
|
Manko, V.S., Mielke, E.W. and Sanabria-Gomez, J.D. (2000) Exact Solution for the Exterior Field of a Rotating Neutron Star. Physical Review D, 61, Article ID: 081501. http://dx.doi.org/10.1103/PhysRevD.61.081501
|
[19]
|
Pachon, L.A., Rueda, J.A. and Sanabria-Gomez, J.D. (2006) Realistic Exact Solution for the Exterior Field of a Rotating Neutron Star. Physical Review D, 73, Article ID: 104038. http://dx.doi.org/10.1103/PhysRevD.73.104038
|
[20]
|
Quevedo, H. (1986) Class of Stationary Axisymmetric Solutions of Einsteins Equations in Empty Space. Physical Review D, 33, 324-327. http://dx.doi.org/10.1103/PhysRevD.33.324
|
[21]
|
Quevedo, H. (1989) General Static Axisymmetric Solution of Einsteins Vacuum Field Equations in Prolate Spheroidal Coordinates. Physical Review D, 39, 2904-2911. http://dx.doi.org/10.1103/PhysRevD.39.2904
|
[22]
|
Quevedo, H. and Mashhoon, B. (1991) Generalization of Kerr Spacetime. Physical Review D, 43, 3902-3906. http://dx.doi.org/10.1103/PhysRevD.43.3902
|
[23]
|
Quevedo, H. (2011) Exterior and Interior Metrics with Quadrupole Moment. General Relativity and Gravitation, 43, 1141-1152. http://dx.doi.org/10.1007/s10714-010-0940-5
|
[24]
|
Ernst, F.J. (1968) New Formulation of the Axially Symmetric Gravitational Field Problem. Physical Review, 167, 1175-1177. http://dx.doi.org/10.1103/PhysRev.167.1175
|
[25]
|
Hoenselaers, C., Kinnersley, W. and Xanthopoulos, B.C. (1979) Symmetries of the Stationary Einstein-Maxwell Equations. VI. Transformations Which Generate Asymptotically Flat Spacetimes with Arbitrary Multipole Moments. Journal of Mathematical Physics, 20, 2530-2536. http://dx.doi.org/10.1063/1.523580
|
[26]
|
Quevedo, H. (2012) Matching Conditions in Relativistic Astrophysics. In: Damour, T., Jantzen, R.T. and Ruffini, R., Eds., Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity, World Scientific, Singapore. http://arxiv.org/abs/1205.0500
|
[27]
|
Andersson, N. and Comer, G.L. (2001) Slowly Rotating General Relativistic Superfluid Neutron Stars. Classical and Quantum Gravity, 18, 969-1002. http://dx.doi.org/10.1088/0264-9381/18/6/302
|
[28]
|
Stergioulas, N. (2003) Rotating Stars in Relativity. Living Reviews in Relativity, 6. http://www.livingreviews.org/lrr-2003-3
|
[29]
|
Fragile, P.C., Blaes, O.M., Anninos, P. and Salmonson, J.D. (2007) Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk. Astrophysical Journal, 668, 417-429. http://dx.doi.org/10.1086/521092
|
[30]
|
Hawley, J.F. (2009) MHD Simulations of Accretion Disks and Jets: Strengths and Limitations. Astrophysics and Space Science, 320, 107-114. http://dx.doi.org/10.1007/s10509-008-9799-2
|
[31]
|
Fendt, C. and Memola, E. (2008) Formation of Relativistic MHD Jets: Stationary State Solutions and Numerical Simulations. International Journal of Modern Physics, D17, 1677-1686. http://dx.doi.org/10.1142/S0218271808013297
|
[32]
|
Frutos-Alfaro, F., Retana-Montenegro, E., Cordero-Garca, I. and Bonatti-Gonzalez, J. (2013) Metric of a Slow Rotating Body with Quadrupole Moment from the Erez-Rosen Metric. International Journal of Astronomy and Astrophysics, 3, 431-437. http://dx.doi.org/10.4236/ijaa.2013.34051
|
[33]
|
Soffel, M.H. (1989) Relativity in Astrometry, Celestial Mechanics and Geodesy (Astronomy and Astrophysics Library). Springer-Verlag, Berlin. http://www.springer.com/us/book/9783642734083
|
[34]
|
Frutos-Alfaro, F. (2001) A Computer Program to Visualize Gravitational Lenses. American Journal of Physics, 69, 218-222. http://dx.doi.org/10.1119/1.1290251
|
[35]
|
Dexter, J. and Algol, E. (2009) A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophysical Journal, 696, 1616-1629. http://dx.doi.org/10.1088/0004-637X/696/2/1616
|
[36]
|
Frutos-Alfaro, F., Grave, F., Muller, T. and Adis, D. (2012) Wavefronts and Light Cones for Kerr Spacetimes. Journal of Modern Physics, 3, 1882-1890. http://dx.doi.org/10.4236/jmp.2012.312237
|
[37]
|
Vincent, F.H., Paumard, T., Gourgoulhon, E. and Perrin, G. (2011) GYOTO: A New General Relativistic Ray-Tracing Code. Classical and Quantum Gravity, 28, Article ID: 225011. http://dx.doi.org/10.1088/0264-9381/28/22/225011
|
[38]
|
Hearn, A.C. (1999) REDUCE (User’s and Contributed Packages Manual). Konrad-Zuse-Zentrum fur Informationstechnik, Berlin. http://www.reduce-algebra.com/docs/reduce.pdf
|
[39]
|
Carmeli, M. (2001) Classical Fields: General Relativity and Gauge Theory. World Scientific Publishing, Singapore. http://www.worldscientific.com/worldscibooks/10.1142/4843
|
[40]
|
Winicour, J., Janis, A.I. and Newman, E.T. (1968) Static, Axially Symmetric Point Horizons. Physical Review, 176, 1507-1513. http://dx.doi.org/10.1103/PhysRev.176.1507
|
[41]
|
Young, J.H. and Coulter, C.A. (1969) Exact Metric for a Nonrotating Mass with a Quadrupole Moment. Physical Review, 184, 1313-1315. http://dx.doi.org/10.1103/PhysRev.184.1313
|
[42]
|
Zel’dovich, Y.B. and Novikov, I.D. (2011) Stars and Relativity. Dover Publications, New York. http://store.doverpublications.com/0486694240.html
|
[43]
|
Lewis, T. (1932) Some Special Solutions of the Equations of Axially Symmetric Gravitational Fields. Proceedings of the Royal Society of London A, 136, 176-192. http://dx.doi.org/10.1098/rspa.1932.0073
|
[44]
|
Chandrasekhar, S. (2000) The Mathematical Theory of Black Holes. Oxford University Press, Oxford. http://www.oupcanada.com/catalog/9780198503705.html
|
[45]
|
Hartle, J.B. and Thorne, K.S. (1968) Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars. Astrophysical Journal, 153, 807-834. http://dx.doi.org/10.1086/149707
|
[46]
|
Berti, E., White, F., Maniopoulou, A. and Bruni, M. (2005) Rotating Neutron Stars: An Invariant Comparison of Approximate and Numerical Spacetime Models. Monthly Notices of the Royal Astronomical Society, 358, 923-938. http://dx.doi.org/10.1111/j.1365-2966.2005.08812.x
|
[47]
|
Sato, H. and Tomimatsu, A. (1973) Gravitational Field of Slowly Rotating Deformed Masses. Progress of Theoretical Physics, 49, 790-799. http://ptp.oxfordjournals.org/content/49/3/790.full.pdf
|
[48]
|
Hernandez-Pastora, J.L. (2006) Approximate Gravitational Field of a Rotating Deformed Mass. General Relativity and Gravitation, 38, 871-884. http://dx.doi.org/10.1007/s10714-006-0269-2
|