A Modified Method for Deriving Self-Conjugate Dirac Hamiltonians in Arbitrary Gravitational Fields and Its Application to Centrally and Axially Symmetric Gravitational Fields

DOI: 10.4236/jmp.2015.63034   PDF   HTML     3,387 Downloads   3,693 Views   Citations


We have proposed previously a method for constructing self-conjugate Hamiltonians Hh in the h-representation with a flat scalar product to describe the dynamics of Dirac particles in arbitrary gravitational fields. In this paper, we prove that, for block-diagonal metrics, the Hamiltonians Hh can be obtained, in particular, using “reduced” parts of Dirac Hamiltonians, i.e. expressions for Dirac Hamiltonians derived using tetrad vectors in the Schwinger gauge without or with a few summands with bispinor connectivities. Based on these results, we propose a modified method for constructing Hamiltonians in the h-representation with a significantly smaller amount of required calculations. Using this method, here we for the first time find self-conjugate Hamiltonians for a number of metrics, including the Kerr metric in the Boyer-Lindquist coordinates, the Eddington-Finkelstein, Finkelstein-Lemaitre, Kruskal, Clifford torus metrics and for non-stationary metrics of open and spatially flat Friedmann models.

Share and Cite:

Gorbatenko, M. and Neznamov, V. (2015) A Modified Method for Deriving Self-Conjugate Dirac Hamiltonians in Arbitrary Gravitational Fields and Its Application to Centrally and Axially Symmetric Gravitational Fields. Journal of Modern Physics, 6, 303-326. doi: 10.4236/jmp.2015.63034.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Gorbatenko, M.V. and Neznamov, V.P. (2011) Physical Review D, 83, Article ID: 105002.
[2] Kerr, R.P. (1963) Physical Review Letters, 11, 237.
[3] Boyer, R.H. and Lindquist, R.W. (1967) Journal of Mathematical Physics, 8, 265-281.
[4] Eddington, A.S. (1924) Nature, 113, 192.
[5] Finkelstein, D. (1958) Physical Review, 110, 965-967.
[6] Painlevè, P. (1921) C. R. Acad. Sci. (Paris), 173, 677-680.
[7] Gullstrand, A. (1922) Arkiv for Matematik, Astronomi och Fysik, 16, 1-15.
[8] Kruskal, M. (1960) Physical Review, 119, 1743-1745.
[9] Novikov, I.D. (1963) AJ, 40, 772.
[10] Fiziev, P.P. arxiv:1012.3520.
[11] Lasenby, A., Doran, C., Pritchard, J., Caceres, A. and Dolan, S. (2005) Physical Review D, 72, Article ID: 105014.
[12] De-Donder, Th. (1921) La gravifique Einshtenienne. Gauthier-Villars, Paris.
[13] Fock, V.A. (1939) Journal of Physics, 1, 81-116.
[14] Obukhov, Y.N. (2001) Physical Review Letters, 86, 192.
Obukhov, Y.N. (2002) Fortschritte der Physik, 50, 711-716.
[15] Leclerc, M. (2006) Classical and Quantum Gravity, 23, 4013-4019.
[16] Obukhov, Y.N., Silenko, A.J. and Teryaev, O.V. (2009) Physical Review D, 80, Article ID: 064044.
[17] Andretsch, J. and Schafer, G. (1978) General Relativity and Gravitation, 9, 243, 489.
[18] Arminjon, M. arxiv:1107.4556v2 [gr-qc].
[19] Gorbatenko, M.V. and Neznamov, V.P. (2010) Physical Review D, 82, Article ID: 104056.
[20] Foldy, L.L. and Wouthuysen, S.A. (1950) Physical Review, 78, 29-36.
[21] Neznamov, V.P. and Silenko, A.J. (2009) Journal of Mathematical Physics, 50, Article ID: 122302.
[22] Gorbatenko, M.V. and Neznamov, V.P. arxiv: 1105.4709 [gr-qc].

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.