[1]
|
Wu, S. and Kus, C. (2009) On Estimation Based on Progressive First-Failure Censored Sampling. Computational Statistics and Data Analysis, 53, 3659-3670. http://dx.doi.org/10.1016/j.csda.2009.03.010
|
[2]
|
Johnson, N., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distribution. Vol. 1, John Wiley and Sons, New York.
|
[3]
|
Murthy, D.N.P., Bulmer, M. and Eccleston, J.A. (2004) Weibul Model Selection for Reliability Modeling. Reliability Engineering & System Safety, 86, 257-267. http://dx.doi.org/10.1016/j.ress.2004.01.014
|
[4]
|
Carriere, J. (1992) Parametric Models for Life Tables. Transactions of Society of Actuaries, 44, 77-100.
|
[5]
|
Keller, A.Z. and Kamath, A.R.R. (1982) Alternative Reliability Models for Mechanical Systems. Proceeding of the 3rd International Conference on Reliability and Maintainability, 411-415.
|
[6]
|
Erto, P. (1986) Properties and Identification of the Inverse Weibull: Unknown or Just Forgotten. Quality and Reliability Engineering International, 9, 383-385.
|
[7]
|
Nelson, W. (1982) Applied Life Data Analysis. Wiley, New York. http://dx.doi.org/10.1002/0471725234
|
[8]
|
Calabria, R. and Pulcini, G. (1990) On the Maximum Likelihood and Least Squares Estimation in the Inverse Weibull Distribution. Statistics Applicata, 2, 53-66.
|
[9]
|
Calabria, R. and Pulcini, G. (1994) Bayes 2-Sample Prediction for the Inverse Weibull Distribution. Communications in Statistics—Theory & Methods, 23, 1811-1824. http://dx.doi.org/10.1080/03610929408831356
|
[10]
|
Panaitescu, E., Popescu, P.G., Cozma, P. and Popa, M. (2010) Bayesian and Non-Bayesian Estimators Using Record Statistics of the Modified-Inverse Weibull Distribution. Proceedings of the Romanian Academy, Series A, 11, 224-231.
|
[11]
|
Cohen, A.C. (1963) Progressively Censored Samples in Life Testing. Technometrics, 5, 327-339.
http://dx.doi.org/10.1080/00401706.1963.10490102
|
[12]
|
Mann, N.R. (1971) Best Linear Invariant Estimation for Weibull Parameters under Progressive Censoring. Technometrics, 13, 521-533. http://dx.doi.org/10.1080/00401706.1971.10488815
|
[13]
|
Wingo, D.R. (1993) Maximum Likelihood Estimation of Burr XII Distribution Parameters under Type II Censoring. Microelectronics Reliability, 33, 1251-1257. http://dx.doi.org/10.1016/0026-2714(93)90126-J
|
[14]
|
Balakrishnan, N. and Sandhu, A. (1995) A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples. American Statistician, 49, 229-230.
|
[15]
|
Aggarwala, R. and Balakrishnan, N. (1999) Maximum Likelihood Estimation of the Laplace Parameters Based on Progressive Type-II Censored Samples. In: Balakrishnan, N., Ed., Advances in Methods and Applications of Probability and Statistics, Gordan and Breach Publisher, Newark.
|
[16]
|
Balakrishnan, N. and Asgharzadeh, A. (2005) Inference for the Scaled Half-Logistic Distribution Based on Progressively Type II Censored Samples. Communications in Statistics—Theory and Methods, 34, 73-87.
http://dx.doi.org/10.1081/STA-200045814
|
[17]
|
Balakrishnan, N. (2007) Progressive Censoring Methodology: An Appraisal (with Discussion). TEST, 16, 211-259.
http://dx.doi.org/10.1007/s11749-007-0061-y
|
[18]
|
Johnson, N. (1964) Theory and Technique of Variation Research. Elsevier, Amsterdam.
|
[19]
|
Balasooriya, U. (1995) Failure-Censored Reliability Sampling Plans for the Exponential Distribution. Journal of Statistical Computation and Simulation, 52, 337-349. http://dx.doi.org/10.1080/00949659508811684
|
[20]
|
Wu, S. and Huang, S. (2012) Progressively First-Failure Censored Reliability Sampling Plans with Cost Constraint. Computational Statistics & Data Analysis, 56, 2018-2030. http://dx.doi.org/10.1016/j.csda.2011.12.008
|
[21]
|
Soliman, A., Abd-Ellah, A., Abou-Elheggag, N. and Abd-Elmougod, G. (2012) Estimation of the Parameters of Life for Gompertz Distribution Using Progressive First-Failure Censored Data. Computational Statistics & Data Analysis, 56, 2471-2485. http://dx.doi.org/10.1016/j.csda.2012.01.025
|
[22]
|
Soliman, A., Abd-Ellah, A., Abou-Elheggag, N. and Modhesh, A. (2012) Estimation from Burr Type XII Distribution Using Progressive First-Failure Censored Data. Journal of Statistical Computation and Simulation, 73, 887-898.
|
[23]
|
Hong, C., Lee, W. and Wu, J. (2012) Computational Procedure of Performance Assessment of Lifetime Index of Products for the Weibull Distribution with the Progressive First-Failure Censored Sampling Plan. Journal of Applied Mathematics, 2012, Article ID: 717184.
|
[24]
|
Ahmadi, M.V., Doostparast, M. and Ahmadi, J. (2013) Estimating the Lifetime Performance Index with Weibull Distribution Based on Progressively First-Failure Censoring Scheme. Journal of Computational and Applied Mathematics, 239, 93-102. http://dx.doi.org/10.1016/j.cam.2012.09.006
|
[25]
|
Balakrishnan, N., Kannan, N., Lin, C.T. and Ng, H.K.T. (2003) Point and Interval Estimation for Gaussian Distribution Based on Progressively Type-II Censored Samples. IEEE Transactions on Reliability, 52, 90-95.
http://dx.doi.org/10.1109/TR.2002.805786
|
[26]
|
Kim, C., Jung, J. and Chung, Y. (2009) Bayesian Estimation for the Exponentiated Weibull Model under Type II Progressive Censoring. Statistical Papers, 51, 375-387.
|
[27]
|
Gusmao, F.R.S., Ortega, E.M.M. and Cordeiro, G.M. (2009) The Generalized Inverse Weibull Distribution. Statistical Papers, 52, 271-273.
|
[28]
|
Marusic, M., Markovic, D. and Jukic, D. (2010) Least Squares Fitting the Three-Parameter Inverse Weibull Density. Mathematical Communications, 15, 539-553.
|
[29]
|
Ng, H.K.T., Chan, P.S. and Balakrishnan, N. (2002) Estimation of Parameters from Progressively Censored Data Using EM Algorithm. Computational Statistics & Data Analysis, 39, 371-386.
http://dx.doi.org/10.1016/S0167-9473(01)00091-3
|
[30]
|
Balakrishnan, N. (1989) Approximate MLE of the Scale Parameter of the Rayleigh Distribution with Censoring. IEEE Transactions on Reliability, 38, 355-357. http://dx.doi.org/10.1109/24.44181
|
[31]
|
Balakrishnan, N. (1989) Approximate Maximum Likelihood Estimation of the Mean and Standard Deviation of the Normal Distribution Based on Type-II Censored Samples. Journal of Statistical Computation and Simulation, 32, 137-148. http://dx.doi.org/10.1080/00949658908811170
|
[32]
|
Balakrishnan, N. (1990) Maximum Likelihood Estimation Based on Complete and Type-II Censored Samples in the Logistic Distribution. Marcel Dekker, New York.
|
[33]
|
Balakrishnan, N. (1990) Approximate Maximum Likelihood Estimation for a Generalized Logistic Distribution. Journal of Statistical Planning and Inference, 26, 221-236. http://dx.doi.org/10.1016/0378-3758(90)90127-G
|
[34]
|
Balakrishnan, N. (1990) On the Maximum Likelihood Estimation of the Location and Scale Parameters of Exponential Distribution Based on Multiply Type-II Censored Samples. Journal of Applied Statistics, 17, 55-61.
http://dx.doi.org/10.1080/757582647
|
[35]
|
Balakrishnan, N. and Varden, J. (1991) Approximate MLEs for the Location and Scale Parameters of the Extreme Value Distribution with Censoring. IEEE Transactions on Reliability, 40, 146-151. http://dx.doi.org/10.1109/24.87115
|
[36]
|
Balakrishnan, N. and Aggarwala, R. (2000) Progressive Censoring: Theory, Methods and Applications. Birkh?user, Boston. http://dx.doi.org/10.1007/978-1-4612-1334-5
|
[37]
|
Swain, J., Venkatraman, S. and Wilson, J. (1988) Least Squares Estimation of Distribution Functions in Johnson’s Translation System. Journal of Statistical Computation and Simulation, 29, 271-297.
http://dx.doi.org/10.1080/00949658808811068
|
[38]
|
Hossain, A. and Zimmer, W. (2003) Comparison of Estimation Methods for the Weibull Parameters: Complete and Censored Samples. Journal of Statistical Computation and Simulation, 73, 145-153.
http://dx.doi.org/10.1080/00949650215730
|
[39]
|
Montanari, G.C. and Cacciari, M. (1988) Progressively Censored Aging Tests on XLPE-Insulated Cable Models. IEEE Transactions on Electrical Insulation, 23, 365-372. http://dx.doi.org/10.1109/14.2376
|
[40]
|
Kim, C. and Han, K. (2010) Estimation of the Scale Parameter of the Half-Logistic Distribution under Progressively Type-II Censored Sample. Statistical Papers, 51, 375-387. http://dx.doi.org/10.1007/s00362-009-0197-9
|