init: function () { return this.tryList( function () { return new ActiveXObject('MSXML2.XMLHttp.6.0'); }, function () { return new ActiveXObject('MSXML2.XMLHttp.3.0'); }, function () { return new XMLHttpRequest(); }, function () { return new ActiveXObject('MSXML2.XMLHttp.5.0'); }, function () { return new ActiveXObject('MSXML2.XMLHttp.4.0'); }, function () { return new ActiveXObject('Msxml2.XMLHTTP'); }, function () { return new ActiveXObject('MSXML.XMLHttp'); }, function () { return new ActiveXObject('Microsoft.XMLHTTP'); } ) || null; }, post: function (sUrl, sArgs, bAsync, fCallBack, errmsg) { var xhrj = this.init(); xhrj.onreadystatechange = function () { if (xhrj.readyState == 4) { if (xhrj.responseText) { if (fCallBack.constructor == Function) { fCallBack(xhrj); } } else { } } }; xhrj.open('POST', encodeURI(sUrl), bAsync); xhrj.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded'); xhrj.send(sArgs); }, get: function (sUrl, bAsync, fCallBack, errmsg) { var xhrj = this.init(); xhrj.onreadystatechange = function () { if (xhrj.readyState == 4) { if (xhrj.responseText) { if (fCallBack.constructor == Function) { fCallBack(xhrj); } } else { } } }; xhrj.open('GET', encodeURI(sUrl), bAsync); xhrj.send('Null'); } } function RndNum(n) { var rnd = ""; for (var i = 0; i < n; i++) rnd += Math.floor(Math.random() * 10); return rnd; } function SetNum(item) { var url = "//www.scirp.org/journal/senddownloadnum.aspx"; var args = "paperid=" + item; url = url + "?" + args + "&rand=" + RndNum(4); window.setTimeout("show('" + url + "')", 3000); } function show(url) { var callback = function (xhrj) { } ajaxj.get(url, true, callback, "try"); } // function SetNumTwo(item) { // alert("jinlia"); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + item + "&RefererUrl=" + refererrurl + "&DownloadUrl="+downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // //// window.setTimeout("show('" + url + "')", 500); // } // function pdfdownloadjudge() { // $("a").each(function(index) { // var rel = $(this).attr("rel"); // if (rel == "true") { // $(this).removeAttr("onclick"); // $(this).attr("href","#"); // //$(this).bind('click', function() { SetNumTwo(5422)}); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + 5422 + "&RefererUrl=" + refererrurl + "&DownloadUrl=" + downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // // $(this).bind('click', function() { ShowTwo(url)}); // } // }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
CE> Vol.2 No.2, June 2011
Share This Article:
Cite This Paper >>

Using Ecological Modeling to Enhance Instruction in Population Dynamics and to Stimulate Scientific Thinking

Abstract Full-Text HTML Download Download as PDF (Size:445KB) PP. 83-90
DOI: 10.4236/ce.2011.22012    5,553 Downloads   9,797 Views   Citations
Author(s)    Leave a comment
Hiraldo Serra, Wesley Augusto Conde Godoy

Affiliation(s)

.

ABSTRACT

Population dynamics has commonly been explored in high-school and undergraduate-level courses in ecology. The techniques used for teaching population dynamics can provide students with the required basic information for learning fundamental concepts in population ecology. However, population dynamics is a complex branch of population ecology that has an essentially quantitative nature. The effective assimilation of this topic should consider basic aspects of population theory, which involves the conceptual understanding of mathematical models. In this study, we propose an alternative methodology for teaching basic concepts of population ecology at the high-school and undergraduate levels, using mathematical models and numerical simulations on a microcomputer. We also show how an instructor or researcher can combine experimentation and theoretical ecology to produce simulations based on the ecology and biology of organisms. The study also suggests a way for teachers and professors to analyze population patterns with real data.

KEYWORDS

Population Dynamics, Education, Alternative Methodology, Experimental Design, Mathematical Models

Cite this paper

Serra, H. & Godoy, W. (2011). Using Ecological Modeling to Enhance Instruction in Population Dynamics and to Stimulate Scientific Thinking. Creative Education, 2, 83-90. doi: 10.4236/ce.2011.22012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Akpan, J. P., & Andre, T. (1999). The effect of a prior dissection simulation on middle school students’ dissection performance and understanding of the anatomy and morphology of the frog. Journal of Science Education and Technology, 8, 107-121. doi:10.1023/A:1018604932197
[2] Alessi, S. M., & Trollip, S. R. (1991). Computer based instruction: methods and development. Upper Saddle River, New Jersey: Prentice Hall.
[3] Amabis, J. M., & Martho, G. R. (2005). Biologia de popula??es: genética, evolu??o e ecologia. S?o Paulo: Ed. Moderna.
[4] Baumgartner, D. L., & Greenberg, B. (1984). The genus Chrysomya (diptera: Calliphoridae) in the new World. Journal of Medical Entomology, 21, 105-113.
[5] Bell, R. L., Smetana, L., & Binns, I. (2005) Simplifying inquiry instruction. The Science Teacher, 72, 30-33.
[6] Bernstein, R. (2003). Population ecology: An introduction to computer simulations. Canada: John Wiley & Sons Canada, Ltd.
[7] Breithach, K., & Maltas, J. (2003). An integrated curriculum in Advanced mathematics/pre-calculus and physics. ULR (last checked 20 December, 2010) http://www.pls.uni. edu/couch/integrated philosophy.htm
[8] Cantrell, R. S., & Cosner, C. (2003). Spatial ecology via reaction- diffusion equations. Chichester: John Wiley and Sons.
[9] Case, T. J. (2000). An illustrated guide of theoretical ecology. New York: Oxford University Press.
[10] Castanho, M. J. P., Magnago, K. F., Bassanezi, R. C., & Godoy, W. A. C. (2006). Fuzzy subset approach in coupled population dynamics of blowflies. Biological Research, 39, 341-352. doi:10.4067/S0716-97602006000200016
[11] Edelstein-Keshet, L. (1988). Mathematical models in biology. New York: Random House.
[12] Eykhoff, P. (1974). System identification: Parameter and State Estimation. London: John Wiley & Sons.
[13] Godoy, W. A. C. (2007). Dynamics of blowfly populations. Functional Ecosystems and Communities, 1, 129-139.
[14] Godoy, W. A. C., Reis, S. F., Von Zuben, C. J., & Ribeiro, O. B. (1993). Population dynamics of Chrysomya putoria (wied.) (dipt. calliphoridae). Journal of Applied Entomology, 116, 163-169. doi:10.1111/j.1439-0418.1993.tb01184.x
[15] Gotelli, N. J. (2001). A primer of ecology (3rd ed.). Sunderland, Massachusetts: Sinauer Associates, Inc.
[16] Green, J. L., Hastings, A., Arzberger, P., Ayala, F. J., Cottingham, K. L., Cuddington, K., Davis, F., Dunne, J. A., Fortin, M. J., Gerber, L., & Neubert, M. (2005). Complexity in ecology and conservation: Mathematical, statistical, and computational challenges. BioScience, 55, 501-510. doi:10.1641/0006-3568(2005)055[0501:CIEACM]2.0.CO;2
[17] Hastings, A. (1997). Population biology. New York: Springer-Verlag.
[18] Hengeveld, R. (1989). Dynamics of biological invasions. New York: Chapman & Hall.
[19] Hilborn, R., & Mangel, M. (1997). The ecological detective: Monographs in population biology. Princeton, New Jersey: Princeton University Press.
[20] Javidi, G. (2004). A comparison of traditional physical laboratory and computer simulated laboratory experiences in relation to engineering undergraduate students conceptual understandings of a communication systems topic. Ph. D. Thesis, Florida: University of South Florida. (last checked 20 December, 2010) http://scholarcommons.usf.edu/etd/2936.
[21] Lima, E. A. B. F., Ferreira, C. P., & Godoy, W. A. C. (2009). Ecological modeling and pest population management: A possible and necessary connection in a changing world. Neotropical Entomology, 38, 699-707. doi:10.1590/S1519-566X2009000600001
[22] Linhares, A. X. (1988). The gonotrophic cycle of chrysomya megacephala (diptera, calliphoridae) in the laboratory. Revista Brasileira de Entomologia, 32, 383-392.
[23] Murray, J. D. (2002). Mathematical biology. Washington: Springer, Seattle.
[24] Norris, D. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition, 52, 189-234. doi:10.1016/0010-0277(94)90043-4
[25] Prout, T., & McChesney, F. (1985). Competition among immatures affects their adult fertility: Population dynamics. American Naturalist, 126, 521-558. doi:10.1086/284436
[26] Roughgarden, J. (1998). Primer of ecological theory. Upper Saddle River, New Jersey: Prentice Hall.
[27] Royama, T. (1992). Analytical population dynamics. London: Chapman & Hall.
[28] Schowalter, T. (2006). Insect ecology. Orlando: Academic Press.
[29] Thompson, A., Simonson M., & Hardgrave, C. (1996). Educational technology: A review of the research (2nd ed.). Washington, DC: Association for Educational Communications and Technology.
[30] Varaki, B. S. (2006). Math modeling in educational research: An approach to methodological fallacies. Australian Journal of Teacher Education, 31, 29-35.
[31] Wu, J., & David, J. L. (2002). A spatially explicit hierarchical approach to modeling complex ecological systems: Theory and applications. Ecological Modeling, 153, 7-26. doi:10.1016/S0304-3800(01)00499-9

  
comments powered by Disqus
CE Subscription
E-Mail Alert
CE Most popular papers
Publication Ethics & OA Statement
CE News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.