Assessment of Methane Flux from Municipal Solid Waste (MSW) Landfill Areas of Delhi, India
Manju Rawat, AL Ramanathan
.
DOI: 10.4236/jep.2011.24045   PDF    HTML     10,424 Downloads   19,107 Views   Citations

Abstract

Carbon dioxide, methane and nitrous oxide are the major Greenhouse Gases (GHG’s), which emit from landfill areas and contribute significantly to global warming. Moreover, that the global warming potential of methane is 21 times higher than that of carbon dioxide and it has highest generation (60%) than other gases. Therefore, there is immense concern for its abatement or utilization from landfill areas. Compared to the west, the composition of municipal solid waste (MSW) in developing countries has higher (40% - 60%) organic waste. This would have potential to emit higher GHG’s from per ton of MSW compared to developed world. Beside that landfills areas in India are not planned or en- gineered generally low lying open areas, where MSW is indiscriminate disposed. This leads to uncontrolled emission of trace gases, foul smell, bird menace, ground and surface water pollution etc. Due to scarcity of land in big cities, mu- nicipal authorities are using same landfill for nearly 10 - 20 years. Hence, the possibility of anaerobic emission of GHG’s further increases. In the present paper we had quantified the methane emission from three MSW landfill areas of Delhi i.e., Gazipur, Bhalswa and Okhla. The results showed that the range of methane emission various in winter from 12.94 to 58.41 and in Summer from 82.69 - 293 mg/m2/h in these landfill areas. The paper has also reviewed the literature on methane emission from India and the status of landfill areas in India.

Share and Cite:

M. Rawat and A. Ramanathan, "Assessment of Methane Flux from Municipal Solid Waste (MSW) Landfill Areas of Delhi, India," Journal of Environmental Protection, Vol. 2 No. 4, 2011, pp. 399-407. doi: 10.4236/jep.2011.24045.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Ganskopp, “Slope Use By Cattle, Feral Horses, Deer And Bighorn Sheep,” Northwest Science, Vol. 61, No. 2, 1987, pp. 74-81.
[2] R. L. Senft, L. R. Rittenhouse and R. G. Wood-mansee, “Factors Influencing Selection of Resting Sites by Cattle on Shortgrass Steppe,” Journal of Range Management, Vol. 38, No. 4, 1985, pp. 295-299. doi:10.2307/3899406
[3] D. Ganskopp, “Manipulating Cattle Distribution with Salt and Water in Large Arid-Land Pastures: A GPS/GIS Assessment,” Applied Animal Behaviour Science, Vol. 73, No. 4, 2001, pp. 251-262. doi:10.1016/S0168-1591(01)00148-4
[4] J. L. Holechek, “An Approach for Setting Stocking Rate,” Rangeland, Vol. 10, No. 1, 1998, pp. 10-14.
[5] S. C. Martin and D. E. Ward, “Salt and Meal-Salt Help Distribute Cattle Use on Semi-Desert Range,” Journal of Range Management, Vol. 26, No. 2, 1973, pp. 94-97. doi:10.2307/3896459
[6] E. J. Bowers, A. C. Hammond, C. C. Chase Jr. and T. A. Olson, “Effect of Breed on Indicators of Heat Tolerance and Grazing Activity in Lactating Angus and Brahman Cows in Florida,” Journal of Animal Science, Vol. 73. No. S1, 1995, p.131.
[7] A. C. Hammond and T. A. Olson, “Rectal Temperature and Grazing Time in Selected Beef Cattle Breeds under Tropical Summer Conditions in Subtropical Florida,” Journal of Tropical Agriculture (Trinidad), Vol. 71, No. 2, 1994, pp. 128-134.
[8] B. W. Mathews, L. E. Sollen-berger, V. D. Nair and C. R. Staples, “Impact of Grazing Man-agement on Soil Nitrogen, Phosphorus, Potassium, and Sulfur Distribution,” Journal of Environmental Quality, Vol. 23, No. 5, 1994, pp. 1006-1013. doi:10.2134/jeq1994.00472425002300050022x
[9] B. W. Ma-thews, J. P. Tritschler, J. R. Carpenter and L. E. Sollenberger, “Soil Macronutrients Distribution in Rotationally Stocked Ki-kuyugrass Paddocks with Short and Long Grazing Periods,” Communications in Soil Science and Plant Analysis, Vol. 30, No. 3-4, 1999, pp. 557-571. doi:10.1080/00103629909370226
[10] R. J. Haynes, “Competitive Aspects of the Grass-Legume Association,” Advances in Agronomy, Vol. 33, 1981, pp. 227-261. doi:10.1016/S0065-2113(08)60168-6
[11] R. J. Haynes and P. H. Williams, “Nutrient Cycling and Soil Fertility in Grazed Pasture Ecosystem,” Advances in Agronomy, Vol. 49, 1993, pp. 119-199. doi:10.1016/S0065-2113(08)60794-4
[12] G. C. Sigua and S. W. Coleman, “Sustainable Manageme- nt of Nutrients in Fo-rage-Based Pasture Soils: Effect Of Animal Congregation Sites,” Journal of Soils and Sed- iments, Vol. 6, No. 4, 2007, pp. 249-253. doi:10.1065/jss2006.09.182
[13] J. O. Klemmendson and A. R. Tiedemann, “Effects of Nutrient Stress,” In D. J. Bedunah and R. Sosebee Eds., Wildland Plants: Physiological Ecology And Developmental Morphology, Society for Range Management, Denver, Colorado, 1995, p. 414-439
[14] A. J. Franzluebbers, J. A. Stuedeman and H. H. Schomberg, “Spatial Distribution of Soil Carbon and Nitrogen Pools under Grazed Tall Fescue,” Soil Science Society of America Journal, Vol. 64, No. 2, 2000, pp. 635-639. doi:10.2136/sssaj2000.642635x
[15] S. L. White, R. E. Sheffield, S. P. Washburn, L. D. King and J. T. Green Jr., “Spatial and Time Distribution of Dairy Cattle Excreta in an Intensive Pasture Systems,” Journal of Environmental Quality, 30, 2001, pp. 2180-2187. doi:10.2134/jeq2001.2180
[16] P. R. Peterson and J. R. Gerrish, “Grazing Systems and Spatial Dis-tribution of Nutrients in Pastures: Livestock Management Con-sideration,” In R. E. Joost and C. A. Roberts Eds., Nutrient Cycling in Forage Systems, Potash and Phosphate Insti., Man-hattan, 1996, pp. 203-212.
[17] K. W. Tate, E. R. Atwill, N. K. McDougald and M. R. George, “Spatial and Temporal Patterns of Cattle Feces Deposition on Rangeland,” Journal of Range Management Applied Animal Behaviour Science, Vol. 56, No. 3, 2003, pp. 784-789.
[18] A. B, Botcher, T. K. Tremwel and K. L. Campbell, “Phosphorus Management in Flatwood (Spodosols) Soils,” In K. R Reddy, et al. Eds., Phosphorus Biogeochemistry in Subtropical Ecosystems, Lewis Publishers, Boca Raton, FL. 1999, pp. 405-423.
[19] S. R. Carpenter, N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley and V.H. Smith, “Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen,” Journal of Applied Ecology, Vol. 8, No. 3, 1998, pp. 559-568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
[20] D. L. Correll, “The Role of Phosphorus in the Eutrophica-tion of Receiving Waters: A Review,” Journal of Environmental Quality, Vol. 27, No. 2, 1998, pp. 261-266. doi:10.2134/jeq1998.00472425002700020004x
[21] G. C. Sigua, J. S. Steward and W. A. Tweedale, “Water Quality Monitoring and Biological Integrity Assessment in the Indian River Lagoon, Florida I. Status and Trends (1988-1994),” Journal of Environmental Management, Vol. 25, No. 2, 2000, pp. 199-209. doi:10.1007/s002679910016
[22] G. C. Sigua and W. A. Twee-dale, “Watershed Scale Assessment of Nitrogen and Phosphorus Loadings in the Indian River Lagoon Basin, FL,” Journal of Environmental Management, Vol. 67, No. 4, 2003, pp. 361-370. doi:10.1016/S0301-4797(02)00220-7
[23] A. N. Sharpley, B. Foy and P. Withers, “Practical and Innovative Measures for the Control of Agricultural Phosphorus Losses to Water: An Over-view,” Journal of Environmental Quality, 29, 2000, pp. 1-9. doi:10.2134/jeq2000.00472425002900010001x
[24] J. T. Sims, “Phosphorus Soil Testing: Innovations For Water Quality Pro-tection,” Communications in Soil Science and Plant Analysis, Vol. 29, No. 11-14, 1998, pp. 1471-1489. doi:10.1080/00103629809370044
[25] H. H. Schomberg, J. A. Stuedemann, A. J. Franzlueber and S. R. Wilkinson, “Spatial Distribution of Extractable Phosphorus, Potassium, and Mag-nesium as Influenced by Fertilizer and Tall Fescue Endophyte Status,” Agronomy Journal, Vol. 92, No. 5, 2000, pp. 981-986. doi:10.2134/agronj2000.925981x
[26] C. P. West, A. P. Mal-larino, W. F. Wedin and D. B. Marx, “Spatial Variability of Soil Chemical Properties in Grazed Pastures,” Soil Science Society of America Journal, Vol. 53, No. 3, 1989, pp.784-789. doi:10.2136/sssaj1989.03615995005300030026x
[27] J. T. Manley, G. E. Schuman, J. D. Reeder and R. H. Hart, “Rangel-and Soil Carbon and Nitrogen Responses to Graz- ing,”Journal of Soil and Water Conservation, Vol. 53, No. 3, 1995, pp. 294-298.
[28] G. E. Schuman, J. D. Reeder, J. T. Manley, R. H. Hart and W. A. Manley, “Impact of Grazing Management on the Carbon and Nitrogen Balance of Mixed Grass Rangeland,” Journal of Applied Ecology, Vol. 9, No. 1, 1999, pp. 65-71. doi:10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2
[29] A. G. Hyde, L. Law, Jr., R. L Weatherspoon, M. D. Cheney and J. J. Eckenrode, “Soil Survey of Hernando County, FL,” USDA-NRCS, Washington DC and University of Florida, Gainesville, FL., 1977, p. 152.
[30] C. G. Chambliss, “Florida Forage Handbook,” University Florida Cooperative Ext. Service. SP, 1999, p. 253.
[31] A. Mehlich, “Determination of P, Ca, Mg, K, Na, and NH4,” North Carolina Soil Test Division, Raleigh NC. Mimeo, 1953, p. 16.
[32] SAS Institute, “SAS/STAT User’s Guide. Release 6.03,” SAS Institute, Cary, North Carolina, 2000, p. 494.
[33] D. B. Beegle, “Soil Fertility Management,” In: F. Martz Ed., The Agronomy Guide, Publica-tions Distirbution Center, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA., 2000, pp. 19-42.
[34] J. T. Sims, R. O. Maguire, A. B. Leytem, K. L. Gartley a- nd M. C. Pautler, “Evaluation of Mehlich-3 as an Agri -Environmental Soil Phosphorus Test for the Mid-Atla- ntic United States of America,” Soil Science Society of A- merica Journal, Vol. 66, No. 6, 2002, pp. 2016-2032. doi:10.2136/sssaj2002.2016
[35] D. Cluzeau, F. Binet, F. Vertes, J. C. Simon, J. M. Riviere and P. Trehen, “Effects of Intensive Cattle Trampling on Soil-Plant-Earthworms System in Two Grassland Types,” Soil Biology & Biochemistry, Vol. 24, No. 12, 1992, pp. 1661-1992. doi:10.1016/0038-0717(92)90166-U
[36] S. W. Trimble, and A. C. Mendel, “The Cow as a Geomorphic Agent—A Critical Review,” Geomorphology, Vol. 13, No. 1-4, 1995, pp. 233-253. doi:10.1016/0169-555X(95)00028-4
[37] R. O. Maguire, T. D. Jickells and M. J. Wilson, “Influence of Cultivation on the Dis-tribution of Phosphorus in Three Soils from NE Scotland and Their Aggregate Fractions,” Soil Use and Management, Vol. 14, No. S4, 1998, pp. 147-153. doi:10.1111/j.1475-2743.1998.tb00633.x
[38] L. Moughli, D. G. Westfall and A. Boukhial, “Use of Adsorption and Buffer Capacity in Soil Testing for Phosphorus,” Communications in Soil Science and Plant Analysis, Vol. 24, No. 15-16, 1993, pp. 1959-1974. doi:10.1080/00103629309368930
[39] C. J. Penn, G. L. Mullins and L. W. Zelazny, “Mineralogy in Relation to Phosphorus Sorption and Dissolved Phosphorus Losses in Ru-noff,” Soil Science Society of America Journal, Vol. 69, No. 5, 2005, pp. 1532-1540. doi:10.2136/sssaj2004.0224
[40] P. S. Hooda, A. R. Rendell, C. C. Edwards, P. J. Withers, M. N. Aitken and V. W. Truesdale, “Relating Soil Phosphorus Indices to Potential Releases to Water,” Journal of Environmental Qual-ity, Vol. 29, No. 4, 2000, pp. 1166-1171. doi:10.2134/jeq2000.00472425002900040018x
[41] R. O. Maguire, J. T. Sims and R. H. Foy, “Long Term Kinetics for Phosphorus Sorption-Desorption by High Phosphorus Soils from Ireland and the Delmarva Peninsula, USA,” Soil Science, Vol. 116, No. 8, 2001, pp. 557-565. doi:10.1097/00010694-200108000-00007
[42] G. P. Heckrath, C. Brookes, P. R. Poulton and K. W. T. Goulding, “Phosphorus Leaching from Soils Containing Different Phosphorus Concen-trations in the Broadbalk Experiment,” Journal of Environmental Quality, Vol. 24, No. 5, 1995, pp. 904-910. doi:10.2134/jeq1995.00472425002400050018x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.