[1]
|
Barone-Adesi, G. and Whaley, R.E. (1987) Efficient Analytic Approximation of American Option Values. The Journal of Finance, 42, 301-320. http://dx.doi.org/10.1111/j.1540-6261.1987.tb02569.x
|
[2]
|
Ju, N.J. and Zhong, R. (1999) An Approximate Formula for Pricing American Options. The Journal of Derivatives, 7, 31-40. http://dx.doi.org/10.3905/jod.1999.319140
|
[3]
|
Little, T., Pant, V. and Hou, C. (2000) A New Integral Representation of the Early Exercise Boundary for American Put Options. Journal of Computational Finance, 3, 73-96.
|
[4]
|
Geske, R. and Johnson, H.E. (1984) The American Put Option Valued Analytically. Journal of Finance, 39, 1511-1524.
http://dx.doi.org/10.1111/j.1540-6261.1984.tb04921.x
|
[5]
|
Kim, I.N. (1990) The Analytic Valuation of American Options. Review of Financial Studies, 3, 547-572.
http://dx.doi.org/10.1093/rfs/3.4.547
|
[6]
|
Bunch, D.S. and Johnson, H. (1992) A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach. Journal of Finance, 47, 809-816.
http://dx.doi.org/10.1111/j.1540-6261.1992.tb04412.x
|
[7]
|
Bjerksund, P. and Stensland, G. (1993) Closed-Form Approximation of American Options. Scandinavian Journal of Management, 9, S87-S99. http://dx.doi.org/10.1016/0956-5221(93)90009-H
|
[8]
|
Barone-Adesi, G. (2005) The Saga of the American Put. Journal of Banking & Finance, 29, 2909-2918.
http://dx.doi.org/10.1016/j.jbankfin.2005.02.001
|
[9]
|
Zhu, S.P. (2006) An Exact and Explicit Solution for the Valuation of American Put Options. Quantitative Finance, 6, 229-242. http://dx.doi.org/10.1080/14697680600699811
|
[10]
|
Bjerksund, P. and Stensland, G. (2002) Closed Form Valuation of American Options. Technical Report, Norwegian School of Economics and Business Administration, Bergen.
|
[11]
|
Kim, I.J., Jang, B.G. and Kim, K.T. (2013) A Simple Iterative Method for the Valuation of American Options. Quantitative Finance, 13, 885-895. http://dx.doi.org/10.1080/14697688.2012.696780
|
[12]
|
Brennan, M. and Schwartz, E. (1977) The Valuation of American Put Options. The Journal of Finance, 32, 449-462.
http://dx.doi.org/10.2307/2326779
|
[13]
|
Cox, J.C., Ross, S.A. and Rubinstein, M. (1979) Option Pricing: A Simplified Approach. Journal of Financial Economics, 7, 229-263. http://dx.doi.org/10.1016/0304-405X(79)90015-1
|
[14]
|
Figlwski, S. and Gao, B. (1999) The Adaptive Mesh Model: A New Approach to Efficient Option Pricing. Journal of Financial Economics, 53, 313-351. http://dx.doi.org/10.1016/S0304-405X(99)00024-0
|
[15]
|
Jiang, L. and Dai, M. (2004) Convergence of Binomial Tree Methods for European/American Path-Dependent Options. SIAM Journal on Numerical Analysis, 42, 1094-1109. http://dx.doi.org/10.1137/S0036142902414220
|
[16]
|
Breen, R. (1991) The Accelerated Binomial Option Pricing Model. The Journal of Financial and Quantitative Analysis, 26, 153-164. http://dx.doi.org/10.2307/2331262
|
[17]
|
Boyle, P. (1986) Option Valuation Using Three-Jump Process. International Options Journal, 3, 7-12.
|
[18]
|
Ahn, J. and Song, M. (2007) Convergence of the Trinomial Tree Method for Pricing European/American Options. Applied Mathematics and Computation, 189, 575-582. http://dx.doi.org/10.1016/j.amc.2006.11.132
|
[19]
|
Brodie, M. and Detemple, J. (1996) American Option Valuation: New Bounds Approximations, and a Comparison of Existing Methods. Review of Financial Studies, 9, 1211-1250. http://dx.doi.org/10.1093/rfs/9.4.1211
|
[20]
|
Longstaff, F.A. and Schwartz, E.S. (2001) Valuing American Options by Simulation: A Simple Least-Squares Approach. Review of Financial Studies, 14, 113-147. http://dx.doi.org/10.1093/rfs/14.1.113
|
[21]
|
Wilmott, P., Dewynne, J.N. and Howison, S.D. (1993) Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford.
|
[22]
|
Dewynne, J.N., Howison, S.D., Rupf, I. and Wilmott, P. (1993) Some Mathematical Results in the Pricing of American Options. European Journal of Applied Mathematics, 4, 381-398. http://dx.doi.org/10.1017/S0956792500001194
|
[23]
|
Verhulst, F. (2005) Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. Springer, Berlin.
|
[24]
|
Fatone, L., Recchioni, M.C. and Zirilli, F. (2007) A Perturbative Formula to Price Barrier Options with Time-Dependent Parameters in the Black and Scholes World. Journal of Risk, 10, 131-146.
|
[25]
|
Secovic, D. (2001) Analysis of the Free Boundary for the Pricing of an American Call Option. European Journal of Applied Mathematics, 12, 25-37.
|